Advertisement

Pericytes in Atherosclerosis

  • Volha Summerhill
  • Alexander Orekhov
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1147)

Abstract

Pericytes are pluripotent cells found in the vascular wall of both capillaries and large blood vessels. Pericytes are highly heterogeneous cells in terms of phenotype, tissue distribution, origin and functions, and they play an important role in the regulation of vascular morphogenesis and function. Pericytes were shown to be involved in tissue development and homeostasis, as well as in pathological processes, including atherosclerosis. Both microvascular and macrovascular pericytes form the cellular network of the arterial wall and are actively involved in lipid accumulation, growth, and neovascularization of the atherosclerotic plaque, local inflammation and thrombosis. According to current understanding, pericytes originate from the multipotent stem cells capable of mesenchymal differentiation to oligopotent lineages, such as osteoclasts, chondrocytes, and adipocytes, and also serve as mesenchymal local progenitors in tissues. Pericyte multilineage potential is fundamental for vascular pathology, including atherosclerotic lesion formation. Pericytes express various surface proteins that can be used for their identification in aid of diagnosis and therapeutic strategies for atherosclerosis and other vascular pathologies.

Keywords

Pericyte Atherosclerosis Cardiovascular diseases Mesenchymal stem cells Endothelial cells Vascular smooth muscle cells Endothelial dysfunction Angiogenesis Differentiation Blood vessels Foam cells Low-density lipids 

Notes

Acknowledgment

Funding: The research was funded by Russian Science Foundation (Grant no. 19-15-00010).

References

  1. Al Ahmad, A., Taboada, C. B., Gassmann, M., & Ogunshola, O. O. (2011). Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. Journal of Cerebral Blood Flow and Metabolism, 31(2), 693–705.  https://doi.org/10.1038/jcbfm.2010.148.CrossRefPubMedGoogle Scholar
  2. Andreeva, E. R., Serebryakov, V. N., & Orekhov, A. N. (1995). Gap junctional communication in primary culture of cells derived from human aortic intima. Tissue and Cell, 27(5), 591–597.CrossRefGoogle Scholar
  3. Andreeva, E. R., Pugach, I. M., Gordon, D., & Orekhov, A. N. (1998). Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue and Cell, 30(1), 127–135.CrossRefGoogle Scholar
  4. Andreeva, E. R., Orekhov, A. N., & Smirnov, V. N. (1991). Quantitative estimation of lipid-laden cells in atherosclerotic lesions of the human aorta. Acta Anatomica (Basel), 141, 316–323.CrossRefGoogle Scholar
  5. Andreeva, E. R., Pugach, I. M., & Orekhov, A. N. (1997a). Collagen-synthesizing cells in initial and advanced atherosclerotic lesions of human aorta. Atherosclerosis, 130, 133–142.CrossRefGoogle Scholar
  6. Andreeva, E. R., Pugach, I. M., & Orekhov, A. N. (1997b). Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro. Atherosclerosis, 135, 19–27.CrossRefGoogle Scholar
  7. Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circulation Research, 97, 512–523.CrossRefGoogle Scholar
  8. Armulik, A., Genové, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21(2), 193215.CrossRefGoogle Scholar
  9. Ardissino, D., Merlini, P. A., Bauer, K. A., Bramucci, E., Ferrario, M., Coppola, R., Fetiveau, R., Lucreziotti, S., Rosenberg, R. D., & Mannucci, P. M. (2001). Thrombogenic potential of human coronary atherosclerotic plaques. Blood, 98(9), 2726–2729.  https://doi.org/10.1182/blood.V98.9.2726.CrossRefPubMedGoogle Scholar
  10. Balabanov, R., & Dore-Duffy, P. (1998). Role of the CNS microvascular pericyte in the blood-brain barrier. Journal of Neuroscience Research, 53, 637–644.  https://doi.org/10.1002/(SICI)1097-4547(19980915)53:6<637::AID-JNR1>3.0.CO;2-6.CrossRefPubMedGoogle Scholar
  11. Bandopadhyay, R., Orte, C., Lawrenson, J. G., Reid, A. R., De Silva, S., & Allt, G. (2001). Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. Journal of Neurocytology, 30(1), 35–44.CrossRefGoogle Scholar
  12. Bergers, G., & Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology, 7(4), 452–464.  https://doi.org/10.1215/S1152851705000232.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Betsholtz, C., Lindblom, P., & Gerhardt, H. (2005). Role of pericytes in vascular morphogenesis. EXS, 94, 5–125.Google Scholar
  14. Birbrair, A., Zhang, T., Wang, Z.-M., et al. (2013). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells and Development, 22(16), 2298–2314.  https://doi.org/10.1089/scd.2012.0647.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M. L., Mintz, A., & Delbono, O. (2015). Pericytes at the intersection between tissue regeneration and pathology. Clinical Science (London, England), 128(2), 81–93.CrossRefGoogle Scholar
  16. Bobik, A. (2006). Transforming growth factor-βs and vascular disorders. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1712–1720.  https://doi.org/10.1161/01.ATV.0000225287.20034.2c.CrossRefPubMedGoogle Scholar
  17. Bobryshev, Y. V., & Lord, R. S. (2000). CD1 expression and the nature of CD1-expressing cells in human atherosclerotic plaques. The American journal of pathology, 156(4), 1477–1478.Google Scholar
  18. Bobryshev, Y. V., Andreeva, E. R., Mikhailova, I. A., Andrianova, I. V., Moisenovich, M. M., Khapchaev, S., et al. (2011). Correlation between lipid deposition, immune-inflammatory cell content and MHC class II expression in diffuse intimal thickening of the human aorta. Atherosclerosis, 219(1), 171–183.CrossRefGoogle Scholar
  19. Bose, A., Barik, S., Banerjee, S., et al. (2013). Tumor-derived vascular pericytes anergize Th cells. Journal of Immunology, 191(2), 971.  https://doi.org/10.4049/jimmunol.1300280.CrossRefGoogle Scholar
  20. Bostrom, K., Watson, K. E., Horn, S., Wortham, C., Herman, I. M., & Demer, L. L. (1993). Bone morphogenetic protein expression in human atherosclerotic lesions. The Journal of Clinical Investigation, 91, 1800–1809.CrossRefGoogle Scholar
  21. Bouacida, A., Rosset, P., Trichet, V., et al. (2012). Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. PLoS One, 7(11), e4864.CrossRefGoogle Scholar
  22. Bouchard, B. A., Shatos, M. A., & Tracy, P. B. (1997). Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 1–9.  https://doi.org/10.1161/01.ATV.17.1.1.CrossRefPubMedGoogle Scholar
  23. Campagnolo, P., Cesselli, D., Al Haj Zen, A., Beltrami, A. P., Kränkel, N., Katare, R., Angelini, G., Emanueli, C., & Madeddu, P. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121, 1735–1745.CrossRefGoogle Scholar
  24. Chen, J., Luo, Y., Hui, H., et al. (2017). CD146 coordinates brain endothelial cell-pericyte communication for blood–brain barrier development. Proceedings of the National Academy of Sciences of the United States of America, 114(36), E7622 LPE7631.CrossRefGoogle Scholar
  25. Chen, R. R., Silva, E. A., Yuen, W. W., et al. (2007). Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharmaceutical Research, 24, 258.  https://doi.org/10.1007/s11095-006-9173-4.CrossRefPubMedGoogle Scholar
  26. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., & Speck, N. A. (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457, 887–891.CrossRefGoogle Scholar
  27. Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiologica, 213, 539–553.  https://doi.org/10.1111/apha.12438.CrossRefPubMedGoogle Scholar
  28. Cochain, C., & Zernecke, A. (2015). Macrophages and immune cells in atherosclerosis: Recent advances and novel concepts. Basic Research in Cardiology, 110(4), 34.CrossRefGoogle Scholar
  29. Collett, G. D. M., & Canfield, A. E. (2005). Angiogenesis and pericytes in the initiation of ectopic calcification. Circulation Research, 96, 930–938.  https://doi.org/10.1161/01.RES.0000163634.51301.0d.CrossRefPubMedGoogle Scholar
  30. Corselli, M., Chen, C.-W., Sun, B., Yap, S., Rubin, J. P., & Péault, B. (2012). The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells and Development, 21(8), 1299–1308.  https://doi.org/10.1089/scd.2011.0200.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Crisan, M., Zheng, B., Zambidis, E. T., Yap, S., Tavian, M., Sun, B., Giacobino, J. P., Casteilla, L., Huard, J., & Péault, B. (2007). Blood vessels as a source of progenitor cells in human embryonic and adult life. In N. M. Bilko, B. Fehse, W. Ostertag, C. Stocking, & A. R. Zander (Eds.), Stem cells and their potential for clinical application, NATO Security through Science Series (A: Chemistry and Biology) (pp. 137–147). Netherlands: Springer.Google Scholar
  32. Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.  https://doi.org/10.1016/j.stem.2008.07.003.CrossRefGoogle Scholar
  33. Cuevas, P., Gutierrez-Diaz, J. A., Reimers, D., Dujovny, M., Diaz, F. G., & Ausman, J. I. (1984). Pericyte endothelial gap junctions in human cerebral capillaries. Anatomy and Embryology, 170, 155–159.  https://doi.org/10.1007/BF00319000.CrossRefPubMedGoogle Scholar
  34. Dohgu, S., Takata, F., Yamauchi, A., Nakagawa, S., Egawa, T., Naito, M., Tsuruo, T., Sawada, Y., Niwa, M., & Kataoka, Y. (2005). Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Research, 1038, 208–215.  https://doi.org/10.1016/j.brainres.2005.01.027.CrossRefPubMedGoogle Scholar
  35. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. J., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.CrossRefGoogle Scholar
  36. Dondossola, E., Rangel, R., Guzman-Rojas, L., et al. (2013). CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 110(51), 20717–20722.CrossRefGoogle Scholar
  37. Dore-Duffy, P., & Cleary, K. (2011). Morphology and properties of pericytes. In S. Nag (Ed.), The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology (Methods and Protocols) (p. 686). New York: Humana Press.Google Scholar
  38. Dulmovits, B. M., & Herman, I. M. (2012). Microvascular remodeling and wound healing: a role for pericytes. The International Journal of Biochemistry & Cell Biology, 44(11), 1800–1812.  https://doi.org/10.1016/j.biocel.2012.06.031.CrossRefGoogle Scholar
  39. Farrington-Rock, C., Crofts, N. J., Doherty, M. J., Ashton, B. A., Griffin-Jones, C., & Canfield, A. E. (2004). Chondrogenic and adipogenic potential of microvascular pericytes. Circulation, 110(15), 2226–2232.CrossRefGoogle Scholar
  40. Favero, G., Paganelli, G., Buffoli, B., Rodella, L. F., & Rezzani, R. (2014). Endothelium and its alterations in cardiovascular diseases: Life style intervention. BioMed Research International, 2014, 801896.  https://doi.org/10.1155/2014/801896.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gerhardt, H., & Betsholtz, C. (2003). Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research, 314, 15.  https://doi.org/10.1007/s00441-003-0745-x.CrossRefGoogle Scholar
  42. Glentis, V., Gurchenkov, D., & Vignjevic, M. (2014). Assembly, heterogeneity, and breaching of the basement membranes. Cell Adhesion & Migration, 8, 236–245.  https://doi.org/10.4161/cam.28733.CrossRefGoogle Scholar
  43. Groschner, L. N., Waldeck-Weiermair, M., Malli, R., et al. (2012). Endothelial mitochondria—less respiration, more integration. Pflugers Archiv—European Journal of Physiology, 464, 63.  https://doi.org/10.1007/s00424-012-1085-z.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Guillemin, G. J., & Brew, B. J. (2004). Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. Journal of Leukocyte Biology, 75(3), 388–397.  https://doi.org/10.1189/jlb.0303114.CrossRefPubMedGoogle Scholar
  45. Hall, C. N., Reynell, C., Gesslein, B., Hamilton, N. B., Mishra, A., Sutherland, B. A., & Attwell, D. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 508(7494), 55.CrossRefGoogle Scholar
  46. Handunnetthi, L., Ramagopalan, S. V., Ebers, G. C., & Knight, J. C. (2010). Regulation of major histocompatibility complex class II gene expression, genetic variation and disease. Genes and Immunity, 11, 99–112.CrossRefGoogle Scholar
  47. Hartvigsen, K., Chou, M. Y., Hansen, L. F., Shaw, P. X., Tsimikas, S., Binder, C. J., & Witztum, J. L. (2009). The role of innate immunity in atherogenesis. Journal of Lipid Research, 50(Suppl), S388–S393.CrossRefGoogle Scholar
  48. Haurani, M. J., & Pagano, P. J. (2007). Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: Bellwether for vascular disease? Cardiovascular Research, 75(4), 679–668.CrossRefGoogle Scholar
  49. Hellstrom, M., Gerhardt, H., Kalen, M., Li, X., Eriksson, U., Wolburg, H., & Betsholtz, C. (2001). Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. The Journal of Cell Biology, 153, 543–553.CrossRefGoogle Scholar
  50. Herman, I. M. (2010). Pericytes and microvascular remodeling: Regulation of retinal angiogenesis. In D. A. Dartt (Ed.), Encyclopedia of the Eye (pp. 296–299). Oxford: Academic Press.  https://doi.org/10.1016/B978-0-12-374203-2.00149-4.CrossRefGoogle Scholar
  51. Hughes, S., Gardiner, T., Hu, P., Baxter, L., Rosinova, E., & Chan-Ling, T. (2006). Altered pericyte-endothelial relations in the rat retina during aging: implications for vessel stability. Neurobiology of Aging, 27, 1838–1847.CrossRefGoogle Scholar
  52. Ivanov, D., Philippova, M., Antropova, J., et al. (2001). Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochemistry and Cell Biology, 3(115), 231–242.Google Scholar
  53. Ivanova, E. A., Bobryshev, Y. V., & Orekhov, A. N. (2015). Intimal pericytes as the second line of immune defence in atherosclerosis. World Journal of Cardiology, 7(10), 583–593.  https://doi.org/10.4330/wjc.v7.i10.583.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ivanova, E. A., & Orekhov, A. N. (2016). Cellular model of atherogenesis based on pluripotent vascular wall pericytes. Stem Cells International, 2016, 7321404.  https://doi.org/10.1155/2016/7321404.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Juchem, G., Weiss, D. R., Gansera, B., Kemkes, B. M., Mueller-Hoecker, J., & Nees, S. (2010). Pericytes in the macrovascular intima: possible physiological and pathogenetic impact. The American Journal of Physiology-Heart and Circulatory Physiology, 3(298), 754–770.CrossRefGoogle Scholar
  56. Kim, J. A., Tran, N. D., Li, Z., Yang, F., Zhou, W., & Fisher, M. J. (2006). Brain endothelial hemostasis regulation by pericytes. Journal of Cerebral Blood Flow and Metabolism, 26, 209–217.  https://doi.org/10.1038/sj.jcbfm.9600181.CrossRefPubMedGoogle Scholar
  57. Kirton, J. P., Wilkinson, F. L., Canfield, A. E., & Alexander, M. Y. (2006). Dexamethasone downregulates calcification-inhibitor molecules and accelerates osteogenic differentiation of vascular pericytes: Implications for vascular calcification. Circulation Research, 98(10), 1264–1272.CrossRefGoogle Scholar
  58. Kirton, P., Crofts, N. J., George, S. J., Brennan, K., & Canfield, A. E. (2007). Wnt/T-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes: potential relevance to vascular disease? Circulation Research, 6(101), 581–589.CrossRefGoogle Scholar
  59. Koh, W., Stratman, A. N., Sacharidou, A., & Davis, G. E. (2008). In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods in Enzymology, 443, 83–101.  https://doi.org/10.1016/S0076-6879(08)02005-3.CrossRefPubMedGoogle Scholar
  60. Korn, J., Christ, B., & Kurz, H. (2002). Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. The Journal of Comparative Neurology, 442, 78–88.  https://doi.org/10.1002/cne.1423.CrossRefPubMedGoogle Scholar
  61. Kostallari, E., Baba-Amer, E., Alonso-Martin, S., Ngoh, P., Relaix, F., Lafuste, P., & Gherardi, R. K. (2015). Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development, 142, 1242–1253.  https://doi.org/10.1242/dev.115386.CrossRefPubMedGoogle Scholar
  62. Kovacic, J. C., & Boehm, M. (2009). Resident vascular progenitor cells: An emerging role for non terminally differentiated vessel-resident cells in vascular biology. Stem Cell Research, 2(1), 2–15.CrossRefGoogle Scholar
  63. Krueger, M., & Bechmann, I. (2010). CNS pericytes: Concepts, misconceptions, and a way out. Glia, 58, 1–10.  https://doi.org/10.1002/glia.20898.CrossRefGoogle Scholar
  64. Leveen, P., Pekny, M., Gebre-Medhin, S., Swolin, B., Larsson, E., & Betsholtz, C. (1994). Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes & Development, 8, 1875–1887.CrossRefGoogle Scholar
  65. Li, X., Xiao, Y., Cui, Y., Tan, T., Narasimhulu, C. A., Hao, H., Liu, L., Zhang, J., He, G., Verfaillie, C. M., Lei, M., Parthasarathy, S., Ma, J., Zhu, H., & Liu, Z. (2014). Cell membrane damage is involved in the impaired survival of bone marrow stem cells by oxidized low-density lipoprotein. Journal of Cellular and Molecular Medicine, 18, 2445–2453.  https://doi.org/10.1111/jcmm.12424.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lindahl, P., Johansson, B. R., Leveen, P., & Betsholtz, C. (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 277, 242–245.CrossRefGoogle Scholar
  67. Mazanet, R., & Franzini-Armstrong, C. (1982). Scanning electron microscopy of pericytes in rat red muscle. Microvascular Research, 23(3), 361–369.CrossRefGoogle Scholar
  68. Mollace, V., Gliozzi, M., Musolino, V., Carresi, C., Muscoli, S., Mollace, R., Tavernese, A., Gratteri, S., Palma, E., Morabito, C., Vitale, C., Muscoli, C., Fini, M., & Romeo, F. (2015). Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: Role of oxidative stress and LOX-1 receptor expression. International Journal of Cardiology, 184, 152–158.CrossRefGoogle Scholar
  69. Montiel-Eulefi, E., Nery, A. A., Rodrigues, L. C., Sánchez, R., Romero, F., & Ulrich, H. (2012). Neural differentiation of rat aorta pericyte cells. Cytometry, 81A, 65–71.  https://doi.org/10.1002/cyto.a.21152.CrossRefGoogle Scholar
  70. Moreno, P. R., Purushothaman, M., & Purushothaman, K. R. (2012). Plaque neovascularization: Defense mechanisms, betrayal, or a war in progress. Annals of the New York Academy of Sciences, 1254, 7–17.CrossRefGoogle Scholar
  71. Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R. K., & McDonald, D. M. (2002). Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. The American Journal of Pathology, 160(3), 985–1000.CrossRefGoogle Scholar
  72. Moore, K. J., & Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145(3), 341–355.CrossRefGoogle Scholar
  73. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., de Ferranti, S., Després, J. P., Fullerton, H. J., Howard, V. J., Huffman, M. D., Judd, S. E., Kissela, B. M., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Liu, S., Mackey, R. H., Matchar, D. B., DK, M. G., Mohler, E. R., Moy, C. S., Muntner, P., Mussolino, M. E., Nasir, K., Neumar, R. W., Nichol, G., Palaniappan, L., Pandey, D. K., Reeves, M. J., Rodriguez, C. J., Sorlie, P. D., Stein, J., Towfighi, A., Turan, T. N., Virani, S. S., Willey, J. Z., Woo, D., Yeh, R. W., Turner, M. B., & American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2015). Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation, 131, e29–e322.PubMedPubMedCentralGoogle Scholar
  74. Murray, I. R., West, C. C., Hardy, W. R., et al. (2014). Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cellular and Molecular Life Sciences, 71, 1353.  https://doi.org/10.1007/s00018-013-1462-6.CrossRefPubMedGoogle Scholar
  75. Nakata, M., Nakagomi, T., Maeda, M., et al. (2017). Induction of perivascular neural stem cells and possible contribution to neurogenesis following transient brain ischemia/reperfusion injury. Translational Stroke Research, 8, 131.  https://doi.org/10.1007/s12975-016-0479-1.CrossRefGoogle Scholar
  76. Nayak, R. C., Berman, A. B., George, K. L., Eusenbarth, G. S., & King, G. L. (1988). A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes. The Journal of Experimental Medicine, 4, 1003–1015.CrossRefGoogle Scholar
  77. Nazarova, V. L., Andreeva, E. R., Tertov, V. V., Gel’dieva, B. S., & Orekhov, A. N. (1995). Immunocytochemical study to localize a scavenger receptor in human aorta smooth muscle cells. Biulleten’ Eksperimental’noĭ Biologii i Meditsiny, 120, 195–198.PubMedGoogle Scholar
  78. Nicosia, R. F. (2009). The aortic ring model of angiogenesis: a quarter century of search and discovery. Journal of Cellular and Molecular Medicine, 13(10), 4113–4136.CrossRefGoogle Scholar
  79. Oberlin, E., Tavian, M., Blazsek, I., & Peault, B. (2002). Blood-forming potential of vascular endothelium in the human embryo. Development, 129, 4147–4157.PubMedGoogle Scholar
  80. Orekhov, A. N., Andreeva, E. R., Krushinsky, A. V., Novikov, I. D., Tertov, V. V., Nestaiko, G. V., Khashimov, K. A., Repin, V. S., & Smirnov, V. N. (1986). Intimal cells and atherosclerosis. Relationship between the number of intimal cells and major manifestations of atherosclerosis in the human aorta. The American Journal of Pathology, 125, 402–415.PubMedPubMedCentralGoogle Scholar
  81. Orekhov, A. N., Andreeva, E. R., & Bobryshev, Y. V. (2016a). Cellular mechanisms of human atherosclerosis: Role of cell-to-cell communications in subendothelial cell functions. Tissue & Cell, 48(1), 25–34.  https://doi.org/10.1016/j.tice.2015.11.002.CrossRefGoogle Scholar
  82. Orekhov, A. N., Andreeva, E. R., Ivanova, E. A., & Bobryshev, Y. V. (2016b). Role of pericytes and modified lipoprotein in human atherogenesis. In Coronary Artery Disease—Research and Practice. Kowloon: iConcept Press Ltd.Google Scholar
  83. Orekhov, A. N., Bobryshev, Y. V., & Chistiakov, D. A. (2014). The complexity of cell composition of the intima of large arteries: Focus on pericyte-like cells. Cardiovascular Research, 103, 438–451.CrossRefGoogle Scholar
  84. Orekhov, A. N., Andreeva, E. R., Andrianova, I. V., & Bobryshev, Y. V. (2010). Peculiarities of cell composition and cell proliferation in different type atherosclerotic lesions in carotid and coronary arteries. Atherosclerosis, 212(2), 436–443.CrossRefGoogle Scholar
  85. Orekhov, A. N., Andreeva, E. R., Mikhailova, I. A., & Gordon, D. (1998). Cell proliferation in normal and atherosclerotic human aorta: proliferative splash in lipid-rich lesions. Atherosclerosis, 139(1), 41–48.CrossRefGoogle Scholar
  86. Orekhov AN and Bobryshev YV. (2015). Cell composition of the subendothelial aortic intima and the role of alpha-smooth muscle actin expressing pericyte-like cells and smooth muscle cells in the development of atherosclerosis. Tissue Engineering and Regenerative Medicine. Muscle Cell and Tissue. Chapter 8. Doi:  https://doi.org/10.5772/60430.Google Scholar
  87. Pallone, T. L., Silldorff, E. P., & Turner, M. R. (1998). Intrarenal blood flow: microvascular anatomy and the regulation of medullary perfusion. Clinical and Experimental Pharmacology & Physiology, 25, 383–392.CrossRefGoogle Scholar
  88. Pallone, T. L., Zhang, Z., & Rhinehart, K. (2003). Physiology of the renal medullary microcirculation. American Journal of Physiology. Renal Physiology, 284, 253–266.CrossRefGoogle Scholar
  89. Pantakani, D. V. K., & Asif, A. (2015). Atherosclerosis: Epigenetic targeting of macrophages in disease management. Journal of Clinical & Cellular Immunology, 6, e118.  https://doi.org/10.4172/2155-9.CrossRefGoogle Scholar
  90. Peppiatt, C. M., Howarth, C., Mobbs, P., & Attwell, D. (2006). Bidirectional control of CNS capillary diameter by pericytes. Nature, 443(7112), 700–704.  https://doi.org/10.1038/nature05193.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Psaltis, J., & Simari, A. D. (2015). Vascular wall progenitor cells in health and disease. Circulation Research, 8(1166), 1392–1412.CrossRefGoogle Scholar
  92. Rajamannan, N. M., Subramaniam, M., Rickard, D., Stock, S. R., Donovan, J., Springett, M., Orszulak, T., Fullerton, D. A., Tajik, A. J., Bonow, R. O., & Spelsberg, T. (2003). Human aortic valve calcification is associated with an osteoblast phenotype. Circulation, 107, 2181–2184.CrossRefGoogle Scholar
  93. Raza, A., Franklin, M. J., & Dudek, A. Z. (2010). Pericytes and vessel maturation during tumor angiogenesis and metastasis. American Journal of Hematology, 85, 593–598.  https://doi.org/10.1002/ajh.21745.CrossRefPubMedGoogle Scholar
  94. Rekhter, M. D., Tertov, V. V., Andreeva, E. R., Kolpakov, V. A., Mironov, A. A., & Orekhov, A. N. (1993). Lipid accumulation in the subendothelial cells of human aortic intima impairs cell-to-cell contacts: A comparative study in situ and in vitro. Cardiovascular Pathology, 2(1), 53–62.CrossRefGoogle Scholar
  95. Rossi, E., Smadja, D. M., Boscolo, E., et al. (2016). Endoglin regulates mural cell adhesion in the circulatory system. Cellular and Molecular Life Sciences, 73, 1715–1739.  https://doi.org/10.1007/s00018-015-2099-4.CrossRefPubMedGoogle Scholar
  96. Rucker, H. K., Wynder, H. J., & Thomas, W. E. (2000). Cellular mechanisms of CNS pericytes. Brain Research Bulletin, 51, 363–369.CrossRefGoogle Scholar
  97. Salvayre, R., Auge, N., Benoist, H., & Negre-Salvayre, A. (2002). Oxidized low-density lipoprotein-induced apoptosis. Biochimica et Biophysica Acta, 1585(2–3), 213–221.CrossRefGoogle Scholar
  98. Shashkin, P., Dragulev, B., & Ley, K. (2005). Macrophage differentiation to foam cells. Current Pharmaceutical Design, 11(23), 3061–3072.CrossRefGoogle Scholar
  99. Sims, D. E. (2000). Diversity Within Pericytes. Clinical and Experimental Pharmacology and Physiology, 27, 842–846.  https://doi.org/10.1046/j.1440-1681.2000.03343.x.CrossRefPubMedGoogle Scholar
  100. Song, L., Lee, C., & Schindler, C. (2011). Deletion of the murine scavenger receptor CD68. Journal of Lipid Research, 52, 1542–1550.CrossRefGoogle Scholar
  101. Steitz, S. A., Speer, M. Y., Curinga, G., et al. (2001). Smooth muscle cell phenotypic transition associated with calcification. Circulation Research, 89(12), 1147–1154.CrossRefGoogle Scholar
  102. Stefanska, A. (2013). Renal pericytes: Multifunctional cells of the kidneys. Pflugers Archiv—European Journal of Physiology, 465, 767–773.  https://doi.org/10.1007/s00424-013-1263-7.CrossRefPubMedGoogle Scholar
  103. Tabas, I., García-Cardeña, G., & Owens, G. K. (2015). Recent insights into the cellular biology of atherosclerosis. The Journal of Cell Biology, 209(1), 13–22.  https://doi.org/10.1083/jcb.201412052.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Takeuchi, T., & Ohtsuki, Y. (2001). Recent progress in T-cadherin (CDH13, H-cadherin) research. Histology and Histopathology, 4(16), 1287–1293.Google Scholar
  105. Tintut, Y., Alfonso, Z., Saini, Z., Radcliff, K., Watson, K., & Boström Kand Demer, L. L. (2003). Multilineage potential of cells from the artery wall. Circulation, 108, 2505–2510.  https://doi.org/10.1161/01.CIR.0000096485.64373.C5.CrossRefPubMedGoogle Scholar
  106. Thomas, W. E. (1999). Brain macrophages: On the role of pericytes and perivascular cells. Brain Research Reviews, 31(1), 42–57.CrossRefGoogle Scholar
  107. van Dijk, C. G., Nieuweboer, F. E., Pei, J. Y., Xu, Y. J., Burgisser, P., van Mulligen, E., el Azzouzi, H., Duncker, D. J., Verhaar, M. C., & Cheng, C. (2015). The complex mural cell: Pericyte function in health and disease. International Journal of Cardiology, 190, 75–89.CrossRefGoogle Scholar
  108. Wang, P. C., Vancura, A., Mitcheson, T. G., & Kuret, J. (1992). Two genes in Saccharomyces cerevisiae encode a membrane-bound form of casein kinase-1. Molecular Biology of the Cell, 3(3), 275–286.CrossRefGoogle Scholar
  109. Warmke, N., Griffin, K. J., & Cubbon, R. M. (2016). Pericytes in diabetes-associated vascular disease. Journal of Diabetes and its Complications, 8(30), 1643–1650.  https://doi.org/10.1016/j.jdiacomp.2016.08.005.CrossRefGoogle Scholar
  110. Wu, D. M., Kawamura, H., Sakagami, K., Kobayashi, M., & Puro, D. G. (2003). Cholinergic regulation of pericyte-containing retinal microvessels. American Journal of Physiology-Heart and Circulatory Physiology, 284(6), H2083–H2090.CrossRefGoogle Scholar
  111. Yemisci, M., Gursoy-Ozdemir, Y., Vural, A., Can, A., Topalkara, K., & Dalkara, T. (2009). Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Medicine, 15(9), 1031.CrossRefGoogle Scholar
  112. Zambidis, E. T., Oberlin, E., Tavian, M., & Peault, B. (2006). Blood-forming endothelium in human ontogeny: Lessons from in utero development and embryonic stem cell culture. Trends in Cardiovascular Medicine, 16, 95–101.CrossRefGoogle Scholar
  113. Zheng, B., Cao, B., Crisan, M., Sun, B., Li, G. H., Logar, A., et al. (2007). Prospective identification of myogenic endothelial cells in human skeletal muscle. Nature Biotechnology, 25(9), 1025–1034.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Volha Summerhill
    • 1
    • 2
  • Alexander Orekhov
    • 1
    • 2
  1. 1.Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyMoscowRussia
  2. 2.Institute for Atherosclerosis Research Moscow, Skolkovo Innovative CenterMoscowRussia

Personalised recommendations