Mesothelioma pp 243-259 | Cite as

Targeted Therapies in Mesothelioma

  • Loredana Urso
  • Giulia PaselloEmail author


Malignant Pleural Mesothelioma (MPM) is an aggressive disease characterized by chemoresistance and few therapeutic options. First-line platinum-pemetrexed chemotherapy represents the current standard of care, and no indication is available for second-line treatments. So far, no targeted therapies proved to significantly impact the natural history of this neoplasm, thus reinforcing the need for new targets and drugs in MPM. In this chapter, we will focus on targeted therapy against molecular mechanisms implied in MPM carcinogenesis, progression, and apoptosis resistance. We will describe clinical trials testing the efficacy of biological agents targeting tyrosine kinase receptors signaling, PI3K-AKT-mTOR and FAK pathways, cell cycle regulation, and apoptosis.


Targeted therapies Growth factor Cell cycle Apoptosis 


  1. 1.
    Tsao AS, Wistuba I, Roth JA, Kindler HL. Malignant pleural mesothelioma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(12):2081–90. Epub 2009/03/04.CrossRefGoogle Scholar
  2. 2.
    Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(14):2636–44. Epub 2003/07/16.CrossRefGoogle Scholar
  3. 3.
    Kindler HL, Ismaila N, Armato SG 3rd, Bueno R, Hesdorffer M, Jahan T, et al. Treatment of malignant pleural mesothelioma: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(13):1343–73. Epub 2018/01/19.CrossRefGoogle Scholar
  4. 4.
    Sekido Y. Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci. 2010;101(1):1–6. Epub 2009/10/02.PubMedCrossRefGoogle Scholar
  5. 5.
    Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF, Gazdar AF, et al. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res. 1995;55(6):1227–31. Epub 1995/03/15.PubMedGoogle Scholar
  6. 6.
    Cheng JQ, Lee WC, Klein MA, Cheng GZ, Jhanwar SC, Testa JR. Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer. 1999;24(3):238–42. Epub 1999/08/19.PubMedCrossRefGoogle Scholar
  7. 7.
    Baser ME, De Rienzo A, Altomare D, Balsara BR, Hedrick NM, Gutmann DH, et al. Neurofibromatosis 2 and malignant mesothelioma. Neurology. 2002;59(2):290–1. Epub 2002/07/24.PubMedCrossRefGoogle Scholar
  8. 8.
    Lo Iacono M, Monica V, Righi L, Grosso F, Libener R, Vatrano S, et al. Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study. J Thorac Oncol. 2015;10(3):492–9. Epub 2014/12/17.PubMedCrossRefGoogle Scholar
  9. 9.
    Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407–16. Epub 2016/03/02.PubMedCrossRefGoogle Scholar
  10. 10.
    Hylebos M, Van Camp G, Vandeweyer G, Fransen E, Beyens M, Cornelissen R, et al. Large-scale copy number analysis reveals variations in genes not previously associated with malignant pleural mesothelioma. Oncotarget. 2017;8(69):113673–86. Epub 2018/01/27.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Petrilli AM, Fernandez-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene. 2016;35(5):537–48. Epub 2015/04/22.PubMedCrossRefGoogle Scholar
  12. 12.
    Sato T, Sekido Y. NF2/Merlin inactivation and potential therapeutic targets in mesothelioma. Int J Mol Sci. 2018;19(4):988. Epub 2018/03/29.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Thurneysen C, Opitz I, Kurtz S, Weder W, Stahel RA, Felley-Bosco E. Functional inactivation of NF2/merlin in human mesothelioma. Lung Cancer. 2009;64(2):140–7. Epub 2008/10/07.PubMedCrossRefGoogle Scholar
  14. 14.
    Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163(4):811–28. Epub 2015/11/07.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Felley-Bosco E, Stahel R. Hippo/YAP pathway for targeted therapy. Translational Lung Cancer Res. 2014;3(2):75–83. Epub 2015/03/26.Google Scholar
  16. 16.
    Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71(3):873–83. Epub 2011/01/20.PubMedCrossRefGoogle Scholar
  17. 17.
    Sekido Y. Inactivation of Merlin in malignant mesothelioma cells and the Hippo signaling cascade dysregulation. Pathol Int. 2011;61(6):331–44. Epub 2011/05/28.PubMedCrossRefGoogle Scholar
  18. 18.
    Tranchant R, Quetel L, Tallet A, Meiller C, Renier A, de Koning L, et al. Co-occurring mutations of tumor suppressor genes, LATS2 and NF2, in malignant pleural mesothelioma. Clin Cancer Res. 2017;23(12):3191–202. Epub 2016/12/23.PubMedCrossRefGoogle Scholar
  19. 19.
    Meerang M, Berard K, Friess M, Bitanihirwe BK, Soltermann A, Vrugt B, et al. Low Merlin expression and high Survivin labeling index are indicators for poor prognosis in patients with malignant pleural mesothelioma. Mol Oncol. 2016;10(8):1255–65. Epub 2016/07/06.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang WQ, Dai YY, Hsu PC, Wang H, Cheng L, Yang YL, et al. Targeting YAP in malignant pleural mesothelioma. J Cell Mol Med. 2017;21(11):2663–76. Epub 2017/05/05.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mizuno T, Murakami H, Fujii M, Ishiguro F, Tanaka I, Kondo Y, et al. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene. 2012;31(49):5117–22. Epub 2012/01/31.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26(12):1300–5. Epub 2012/06/09.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gibault F, Corvaisier M, Bailly F, Huet G, Melnyk P, Cotelle P. Non-Photoinduced biological properties of Verteporfin. Curr Med Chem. 2016;23(11):1171–84. Epub 2016/03/17.PubMedCrossRefGoogle Scholar
  24. 24.
    Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11(5):329–41. Epub 2010/04/10.PubMedCrossRefGoogle Scholar
  25. 25.
    Julien LA, Carriere A, Moreau J, Roux PP. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol. 2010;30(4):908–21. Epub 2009/12/10.PubMedCrossRefGoogle Scholar
  26. 26.
    Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15(5):273–91. Epub 2018/03/07.PubMedCrossRefGoogle Scholar
  27. 27.
    Li W, Cooper J, Karajannis MA, Giancotti FG. Merlin: a tumour suppressor with functions at the cell cortex and in the nucleus. EMBO Rep. 2012;13(3):204–15. Epub 2012/04/07.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Stahel RA, Weder W, Felley-Bosco E, Petrausch U, Curioni-Fontecedro A, Schmitt-Opitz I, et al. Searching for targets for the systemic therapy of mesothelioma. Ann Oncol. 2015;26(8):1649–60. Epub 2015/02/28.PubMedCrossRefGoogle Scholar
  29. 29.
    Cedres S, Ponce-Aix S, Pardo-Aranda N, Navarro-Mendivil A, Martinez-Marti A, Zugazagoitia J, et al. Analysis of expression of PTEN/PI3K pathway and programmed cell death ligand 1 (PD-L1) in malignant pleural mesothelioma (MPM). Lung Cancer. 2016;96:1–6. Epub 2016/05/03.PubMedCrossRefGoogle Scholar
  30. 30.
    Agarwal V, Campbell A, Beaumont KL, Cawkwell L, Lind MJ. PTEN protein expression in malignant pleural mesothelioma. Tumour Biol. 2013;34(2):847–51. Epub 2012/12/18.PubMedCrossRefGoogle Scholar
  31. 31.
    Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG. Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol. 2009;29(15):4235–49. Epub 2009/05/20.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pignochino Y, Dell’Aglio C, Inghilleri S, Zorzetto M, Basirico M, Capozzi F, et al. The combination of sorafenib and everolimus shows antitumor activity in preclinical models of malignant pleural mesothelioma. BMC Cancer. 2015;15:374. Epub 2015/05/09.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ou SH, Moon J, Garland LL, Mack PC, Testa JR, Tsao AS, et al. SWOG S0722: phase II study of mTOR inhibitor everolimus (RAD001) in advanced malignant pleural mesothelioma (MPM). J Thorac Oncol. 2015;10(2):387–91. Epub 2015/01/23.PubMedCrossRefGoogle Scholar
  34. 34.
    Dolly SO, Wagner AJ, Bendell JC, Kindler HL, Krug LM, Seiwert TY, et al. Phase I study of Apitolisib (GDC-0980), dual Phosphatidylinositol-3-kinase and mammalian target of Rapamycin kinase inhibitor, in patients with advanced solid Tumors. Clin Cancer Res. 2016;22(12):2874–84. Epub 2016/01/21.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Powles T, Lackner MR, Oudard S, Escudier B, Ralph C, Brown JE, et al. Randomized open-label phase II trial of Apitolisib (GDC-0980), a novel inhibitor of the PI3K/mammalian target of Rapamycin pathway, versus Everolimus in patients with metastatic renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(14):1660–8. Epub 2016/03/10.CrossRefGoogle Scholar
  36. 36.
    Yamaji M, Ota A, Wahiduzzaman M, Karnan S, Hyodo T, Konishi H, et al. Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017;6(11):2646–59. Epub 2017/09/30.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Spencer A, Yoon SS, Harrison SJ, Morris SR, Smith DA, Brigandi RA, et al. The novel AKT inhibitor afuresertib shows favorable safety, pharmacokinetics, and clinical activity in multiple myeloma. Blood. 2014;124(14):2190–5. Epub 2014/07/31.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014;14(9):598–610. Epub 2014/08/08.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lim ST, Mikolon D, Stupack DG, Schlaepfer DD. FERM control of FAK function: implications for cancer therapy. Cell Cycle. 2008;7(15):2306–14. Epub 2008/08/05.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Roy-Luzarraga M, Hodivala-Dilke K. Molecular pathways: endothelial cell FAK-A target for cancer treatment. Clin Cancer Res. 2016;22(15):3718–24. Epub 2016/06/05.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Serrels A, Lund T, Serrels B, Byron A, McPherson RC, von Kriegsheim A, et al. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell. 2015;163(1):160–73. Epub 2015/09/26.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shapiro IM, Kolev VN, Vidal CM, Kadariya Y, Ring JE, Wright Q, et al. Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship. Sci Transl Med. 2014;6(237):237ra68. Epub 2014/05/23.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Poulikakos PI, Xiao GH, Gallagher R, Jablonski S, Jhanwar SC, Testa JR. Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene. 2006;25(44):5960–8. Epub 2006/05/03.PubMedCrossRefGoogle Scholar
  44. 44.
    Kato T, Sato T, Yokoi K, Sekido Y. E-cadherin expression is correlated with focal adhesion kinase inhibitor resistance in Merlin-negative malignant mesothelioma cells. Oncogene. 2017;36(39):5522–31. Epub 2017/05/30.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang J, He DH, Zajac-Kaye M, Hochwald SN. A small molecule FAK kinase inhibitor, GSK2256098, inhibits growth and survival of pancreatic ductal adenocarcinoma cells. Cell Cycle. 2014;13(19):3143–9. Epub 2014/12/09.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Thanapprapasr D, Previs RA, Hu W, Ivan C, Armaiz-Pena GN, Dorniak PL, et al. PTEN expression as a predictor of response to focal adhesion kinase inhibition in uterine cancer. Mol Cancer Ther. 2015;14(6):1466–75. Epub 2015/04/03.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Soria JC, Gan HK, Blagden SP, Plummer R, Arkenau HT, Ranson M, et al. A phase I, pharmacokinetic and pharmacodynamic study of GSK2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. Ann Oncol. 2016;27(12):2268–74. Epub 2016/10/14.PubMedCrossRefGoogle Scholar
  48. 48.
    Arkenau H-T, Gazzah A, Plummer R, Blagden SP, Mak G, Soria J-C, et al. A phase Ib dose-escalation study of GSK2256098 (FAKi) plus trametinib (MEKi) in patients with selected advanced solid tumors. J Clin Oncol. 2015;33(15_suppl):2593.CrossRefGoogle Scholar
  49. 49.
    Dazzi H, Hasleton PS, Thatcher N, Wilkes S, Swindell R, Chatterjee AK. Malignant pleural mesothelioma and epidermal growth factor receptor (EGF-R). Relationship of EGF-R with histology and survival using fixed paraffin embedded tissue and the F4, monoclonal antibody. Br J Cancer. 1990;61(6):924–6. Epub 1990/06/01.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Govindan R, Kratzke RA, Herndon JE 2nd, Niehans GA, Vollmer R, Watson D, et al. Gefitinib in patients with malignant mesothelioma: a phase II study by the cancer and Leukemia group B. Clin Cancer Res. 2005;11(6):2300–4. Epub 2005/03/25.PubMedCrossRefGoogle Scholar
  51. 51.
    Pasello G, Favaretto A. Molecular targets in malignant pleural mesothelioma treatment. Curr Drug Targets. 2009;10(12):1235–44. Epub 2009/11/17.PubMedCrossRefGoogle Scholar
  52. 52.
    Garland LL, Rankin C, Gandara DR, Rivkin SE, Scott KM, Nagle RB, et al. Phase II study of erlotinib in patients with malignant pleural mesothelioma: a southwest oncology group study. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(17):2406–13. Epub 2007/06/15.CrossRefGoogle Scholar
  53. 53.
    Mezzapelle R, Miglio U, Rena O, Paganotti A, Allegrini S, Antona J, et al. Mutation analysis of the EGFR gene and downstream signalling pathway in histologic samples of malignant pleural mesothelioma. Br J Cancer. 2013;108(8):1743–9. Epub 2013/04/06.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gaudino G, Yang H, Carbone M. HGF/met Signaling is a key player in malignant mesothelioma carcinogenesis. Biomedicine. 2014;2(4):327–44. Epub 2014/11/14.Google Scholar
  55. 55.
    Bois MC, Mansfield AS, Sukov WR, Jenkins SM, Moser JC, Sattler CA, et al. c-Met expression and MET amplification in malignant pleural mesothelioma. Ann Diagn Pathol. 2016;23:1–7. Epub 2016/07/13.PubMedCrossRefGoogle Scholar
  56. 56.
    Kubo T, Toyooka S, Tsukuda K, Sakaguchi M, Fukazawa T, Soh J, et al. Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res. 2011;17(15):4965–74. Epub 2011/06/16.PubMedCrossRefGoogle Scholar
  57. 57.
    Jagadeeswaran R, Ma PC, Seiwert TY, Jagadeeswaran S, Zumba O, Nallasura V, et al. Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res. 2006;66(1):352–61. Epub 2006/01/07.PubMedCrossRefGoogle Scholar
  58. 58.
    Santoro A, Rimassa L, Borbath I, Daniele B, Salvagni S, Van Laethem JL, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14(1):55–63. Epub 2012/11/28.PubMedCrossRefGoogle Scholar
  59. 59.
    Maron SB, Karrison T, Kanteti R, Rao KA, Gandara DR, Koczywas M, et al. ARQ 197 in patients with previously-treated malignant mesothelioma (MM): a phase II trial from the University of Chicago phase II consortium. J Clin Oncol. 2015;33(15_suppl):7511.CrossRefGoogle Scholar
  60. 60.
    Leon LG, Gemelli M, Sciarrillo R, Avan A, Funel N, Giovannetti E. Synergistic activity of the c-Met and tubulin inhibitor tivantinib (ARQ197) with pemetrexed in mesothelioma cells. Curr Drug Targets. 2014;15(14):1331–40. Epub 2014/12/09.PubMedCrossRefGoogle Scholar
  61. 61.
    Kanteti R, Dhanasingh I, Kawada I, Lennon FE, Arif Q, Bueno R, et al. MET and PI3K/mTOR as a potential combinatorial therapeutic target in malignant pleural mesothelioma. PLoS One. 2014;9(9):e105919. Epub 2014/09/16.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Porta C, Mutti L, Tassi G. Negative results of an Italian Group for Mesothelioma (G.I.Me.) pilot study of single-agent imatinib mesylate in malignant pleural mesothelioma. Cancer Chemother Pharmacol. 2007;59(1):149–50. Epub 2006/04/26.PubMedCrossRefGoogle Scholar
  63. 63.
    Mathy A, Baas P, Dalesio O, van Zandwijk N. Limited efficacy of imatinib mesylate in malignant mesothelioma: a phase II trial. Lung Cancer. 2005;50(1):83–6. Epub 2005/06/14.PubMedCrossRefGoogle Scholar
  64. 64.
    Tsao AS, Harun N, Lee JJ, Heymach J, Pisters K, Hong WK, et al. Phase I trial of cisplatin, pemetrexed, and imatinib mesylate in chemonaive patients with unresectable malignant pleural mesothelioma. Clin Lung Cancer. 2014;15(3):197–201. Epub 2014/02/05.PubMedCrossRefGoogle Scholar
  65. 65.
    Huang L, Cai M, Zhang X, Wang F, Chen L, Xu M, et al. Combinational therapy of crizotinib and afatinib for malignant pleural mesothelioma. Am J Cancer Res. 2017;7(2):203–17. Epub 2017/03/25.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Ogino H, Yano S, Kakiuchi S, Yamada T, Ikuta K, Nakataki E, et al. Novel dual targeting strategy with vandetanib induces tumor cell apoptosis and inhibits angiogenesis in malignant pleural mesothelioma cells expressing RET oncogenic rearrangement. Cancer Lett. 2008;265(1):55–66. Epub 2008/03/28.PubMedCrossRefGoogle Scholar
  67. 67.
    Giovannetti E, Zucali PA, Assaraf YG, Leon LG, Smid K, Alecci C, et al. Preclinical emergence of vandetanib as a potent antitumour agent in mesothelioma: molecular mechanisms underlying its synergistic interaction with pemetrexed and carboplatin. Br J Cancer. 2011;105(10):1542–53. Epub 2011/10/06.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tsao AS, He D, Saigal B, Liu S, Lee JJ, Bakkannagari S, et al. Inhibition of c-Src expression and activation in malignant pleural mesothelioma tissues leads to apoptosis, cell cycle arrest, and decreased migration and invasion. Mol Cancer Ther. 2007;6(7):1962–72. Epub 2007/07/11.PubMedCrossRefGoogle Scholar
  69. 69.
    Dudek AZ, Pang H, Kratzke RA, Otterson GA, Hodgson L, Vokes EE, et al. Phase II study of dasatinib in patients with previously treated malignant mesothelioma (cancer and leukemia group B 30601): a brief report. J Thorac Oncol. 2012;7(4):755–9. Epub 2012/03/20.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tsao AS, Lin H, Carter BW, Lee JJ, Rice D, Vaporcyan A, et al. Biomarker-integrated Neoadjuvant Dasatinib trial in Resectable malignant pleural mesothelioma. J Thorac Oncol. 2018;13(2):246–57. Epub 2018/01/10.PubMedCrossRefGoogle Scholar
  71. 71.
    O'Kane SL, Pound RJ, Campbell A, Chaudhuri N, Lind MJ, Cawkwell L. Expression of bcl-2 family members in malignant pleural mesothelioma. Acta Oncol. 2006;45(4):449–53. Epub 2006/06/09.PubMedCrossRefGoogle Scholar
  72. 72.
    Kleinberg L, Lie AK, Florenes VA, Nesland JM, Davidson B. Expression of inhibitor-of-apoptosis protein family members in malignant mesothelioma. Hum Pathol. 2007;38(7):986–94. Epub 2007/03/14.PubMedCrossRefGoogle Scholar
  73. 73.
    Khan O, La Thangue NB. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol. 2012;90(1):85–94. Epub 2011/11/30.PubMedCrossRefGoogle Scholar
  74. 74.
    Paik PK, Krug LM. Histone deacetylase inhibitors in malignant pleural mesothelioma: preclinical rationale and clinical trials. J Thorac Oncol. 2010;5(2):275–9. Epub 2009/12/26.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–84. Epub 2006/09/07.PubMedCrossRefGoogle Scholar
  76. 76.
    Cao XX, Mohuiddin I, Ece F, McConkey DJ, Smythe WR. Histone deacetylase inhibitor downregulation of bcl-xl gene expression leads to apoptotic cell death in mesothelioma. Am J Respir Cell Mol Biol. 2001;25(5):562–8. Epub 2001/11/20.PubMedCrossRefGoogle Scholar
  77. 77.
    Neuzil J, Swettenham E, Gellert N. Sensitization of mesothelioma to TRAIL apoptosis by inhibition of histone deacetylase: role of Bcl-xL down-regulation. Biochem Biophys Res Commun. 2004;314(1):186–91. Epub 2004/01/13.PubMedCrossRefGoogle Scholar
  78. 78.
    Symanowski J, Vogelzang N, Zawel L, Atadja P, Pass H, Sharma S. A histone deacetylase inhibitor LBH589 downregulates XIAP in mesothelioma cell lines which is likely responsible for increased apoptosis with TRAIL. J Thorac Oncol. 2009;4(2):149–60. Epub 2009/01/31.PubMedCrossRefGoogle Scholar
  79. 79.
    Vandermeers F, Hubert P, Delvenne P, Mascaux C, Grigoriu B, Burny A, et al. Valproate, in combination with pemetrexed and cisplatin, provides additional efficacy to the treatment of malignant mesothelioma. Clin Cancer Res. 2009;15(8):2818–28. Epub 2009/04/09.PubMedCrossRefGoogle Scholar
  80. 80.
    Krug LM, Kindler HL, Calvert H, Manegold C, Tsao AS, Fennell D, et al. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Oncol. 2015;16(4):447–56. Epub 2015/03/25.PubMedCrossRefGoogle Scholar
  81. 81.
    Ramalingam SS, Belani CP, Ruel C, Frankel P, Gitlitz B, Koczywas M, et al. Phase II study of belinostat (PXD101), a histone deacetylase inhibitor, for second line therapy of advanced malignant pleural mesothelioma. J Thorac Oncol. 2009;4(1):97–101. Epub 2008/12/20.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Scherpereel A, Berghmans T, Lafitte JJ, Colinet B, Richez M, Bonduelle Y, et al. Valproate-doxorubicin: promising therapy for progressing mesothelioma. A phase II study. Eur Respir J. 2011;37(1):129–35. Epub 2010/06/10.PubMedCrossRefGoogle Scholar
  83. 83.
    Fennell DA, Chacko A, Mutti L. BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene. 2008;27(9):1189–97. Epub 2007/09/11.PubMedCrossRefGoogle Scholar
  84. 84.
    Sartore-Bianchi A, Gasparri F, Galvani A, Nici L, Darnowski JW, Barbone D, et al. Bortezomib inhibits nuclear factor-kappaB dependent survival and has potent in vivo activity in mesothelioma. Clin Cancer Res. 2007;13(19):5942–51. Epub 2007/10/03.PubMedCrossRefGoogle Scholar
  85. 85.
    Gordon GJ, Mani M, Maulik G, Mukhopadhyay L, Yeap BY, Kindler HL, et al. Preclinical studies of the proteasome inhibitor bortezomib in malignant pleural mesothelioma. Cancer Chemother Pharmacol. 2008;61(4):549–58. Epub 2007/05/25.PubMedCrossRefGoogle Scholar
  86. 86.
    Fennell DA, McDowell C, Busacca S, Webb G, Moulton B, Cakana A, et al. Phase II clinical trial of first or second-line treatment with bortezomib in patients with malignant pleural mesothelioma. J Thorac Oncol. 2012;7(9):1466–70. Epub 2012/08/17.PubMedCrossRefGoogle Scholar
  87. 87.
    O’Brien ME, Gaafar RM, Popat S, Grossi F, Price A, Talbot DC, et al. Phase II study of first-line bortezomib and cisplatin in malignant pleural mesothelioma and prospective validation of progression free survival rate as a primary end-point for mesothelioma clinical trials (European Organisation for Research and Treatment of Cancer 08052). Eur J Cancer. 2013;49(13):2815–22. Epub 2013/06/25.PubMedCrossRefGoogle Scholar
  88. 88.
    Williams M, Kirschner MB, Cheng YY, Hanh J, Weiss J, Mugridge N, et al. miR-193a-3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget. 2015;6(27):23480–95. Epub 2015/07/01.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, et al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol. 2013;24(12):3128–35. Epub 2013/10/24.PubMedCrossRefGoogle Scholar
  90. 90.
    Truini A, Coco S, Genova C, Mora M, Dal Bello MG, Vanni I, et al. Prognostic and therapeutic implications of MicroRNA in malignant pleural mesothelioma. MicroRNA. 2016;5(1):12–8. Epub 2016/01/29.PubMedCrossRefGoogle Scholar
  91. 91.
    van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18(10):1386–96. Epub 2017/09/06.PubMedCrossRefGoogle Scholar
  92. 92.
    Jennings CJ, Murer B, O'Grady A, Hearn LM, Harvey BJ, Kay EW, et al. Differential p16/INK4A cyclin-dependent kinase inhibitor expression correlates with chemotherapy efficacy in a cohort of 88 malignant pleural mesothelioma patients. Br J Cancer. 2015;113(1):69–75. Epub 2015/06/10.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417–30. Epub 2016/04/01.PubMedCrossRefGoogle Scholar
  94. 94.
    Bonelli MA, Digiacomo G, Fumarola C, Alfieri R, Quaini F, Falco A, et al. Combined inhibition of CDK4/6 and PI3K/AKT/mTOR pathways induces a synergistic anti-tumor effect in malignant pleural mesothelioma cells. Neoplasia. 2017;19(8):637–48. Epub 2017/07/14.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Urso L, Calabrese F, Favaretto A, Conte P, Pasello G. Critical review about MDM2 in cancer: possible role in malignant mesothelioma and implications for treatment. Crit Rev Oncol Hematol. 2016;97:220–30. Epub 2015/09/12.PubMedCrossRefGoogle Scholar
  96. 96.
    Tovar C, Graves B, Packman K, Filipovic Z, Higgins B, Xia M, et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 2013;73(8):2587–97. Epub 2013/02/13.PubMedCrossRefGoogle Scholar
  97. 97.
    Pasello G, Urso L, Mencoboni M, Grosso F, Ceresoli GL, Lunardi F, et al. MDM2 and HIF1alpha expression levels in different histologic subtypes of malignant pleural mesothelioma: correlation with pathological and clinical data. Oncotarget. 2015;6(39):42053–66. Epub 2015/11/07.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Urso L, Cavallari I, Silic-Benussi M, Biasini L, Zago G, Calabrese F, et al. Synergistic targeting of malignant pleural mesothelioma cells by MDM2 inhibitors and TRAIL agonists. Oncotarget. 2017;8(27):44232–41. Epub 2017/06/01.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hopkins-Donaldson S, Belyanskaya LL, Simoes-Wust AP, Sigrist B, Kurtz S, Zangemeister-Wittke U, et al. p53-induced apoptosis occurs in the absence of p14(ARF) in malignant pleural mesothelioma. Neoplasia. 2006;8(7):551–9. Epub 2006/07/27.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Andreeff M, Kelly KR, Yee K, Assouline S, Strair R, Popplewell L, et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin Cancer Res. 2016;22(4):868–76. Epub 2015/10/16.PubMedCrossRefGoogle Scholar
  101. 101.
    Burgess A, Chia KM, Haupt S, Thomas D, Haupt Y, Lim E. Clinical overview of MDM2/X-targeted therapies. Front Oncol. 2016;6:7. Epub 2016/02/10.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem. 2013;56(14):5979–83. Epub 2013/07/03.PubMedCrossRefGoogle Scholar
  103. 103.
    Jackman DM, Kindler HL, Yeap BY, Fidias P, Salgia R, Lucca J, et al. Erlotinib plus bevacizumab in previously treated patients with malignant pleural mesothelioma. Cancer. 2008;113(4):808–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
  2. 2.Medical Oncology 2, Istituto Oncologico Veneto IRCCSPadovaItaly

Personalised recommendations