Hydrothermal Synthesis and Characterization of TiO2 Nanorod Array Grown on FTO Substrate

  • Harish Suryawanshi
  • D. R. Patil
Conference paper


In the present study, TiO2 nanorod array (TiO2 NRA) structure was synthesized on FTO substrate using the hydrothermal method. The effect of hydrothermal temperature and growth time on the morphology of TiO2 NRA was studied in this work. Structural and morphological properties of synthesized TiO2 NRA were investigated using X-ray diffraction (XRD) and Field emission scanning electron microscope (FE-SEM). The optical properties were evaluated using UV–Vis spectroscopy, and fluorescence spectroscopy. From XRD, it was confirmed that synthesized TiO2 have rutile phase. FE-SEM study reveals that synthesized TiO2 nanorods have square shape and tetragonal structure having a size of 50 nm and length of 1 μm. The TiO2 nano-rod array has surface defects such as oxygen vacancies were confirmed by photoluminescence study.


TiO2 Nano rod array Oxygen vacancies Hydrothermal 


  1. 1.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterial: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  2. 2.
    Mali SS, Kim H, Shim CS, Patil PS, Kim JH, Hong CK (2013) Surfactant free most probable TiO 2 nanostructures via hydrothermal and its dye-sensitized solar cell properties. Sci Rep 3:3004CrossRefGoogle Scholar
  3. 3.
    Cao F, Xiong J, Wu F, Liu Q, Shi Z, Yu Y, Li L (2016) Enhanced photo electrochemical performance from rationally designed anatase/rutile TiO2 heterostructures. ACS Appl Mater Interfaces 8(19):12239–12245CrossRefGoogle Scholar
  4. 4.
    Shahrezaei M, Habibzadeh S, Babaluo AA, Hosseinkhani H, Haghighi M, Hasanzadeh A, Tahmasebpour R (2017) Study of synthesis parameters and photocatalytic activity of TiO2 nanostructures. J Exp Nanosci 12(1):45–61CrossRefGoogle Scholar
  5. 5.
    Lin HW, Chang YH, Chen C (2011) Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method. J Electrochem Soc 159(1):K5–K9CrossRefGoogle Scholar
  6. 6.
    Ramadoss A, Kim SJ (2013) Vertically aligned TiO2 nanorod arrays for electrochemical super capacitor. J Alloys Compd 561:262–267CrossRefGoogle Scholar
  7. 7.
    Feng T, Feng GS, Yan L, Pan JH (2014) One-Dimensional nanostructured TiO2 for photocatalytic degradation of organic pollutants in wastewater. Int J Photoenergy 2014Google Scholar
  8. 8.
    Liu Y, Wang H, Wang Y, Xu H, Li M, Shen H (2011) Substrate-free, large-scale, free-standing and two-side oriented single crystal TiO2 nanorod array films with photocatalytic properties. Chem Commun 47(13):3790–3792CrossRefGoogle Scholar
  9. 9.
    Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamadi S, Katagiri K, Koumoto K (2009) Sol–gel template synthesis and characterization of aligned anatase-TiO2 nanorod arrays with different diameter. Mater Chem Phys 113(2–3):856–860CrossRefGoogle Scholar
  10. 10.
    Liu H, Zhang Y, Li R, Cai M, Sun X (2011) A facile route to synthesize titanium oxide nanowires via water-assisted chemical vapor deposition. J Nanopart Res 13(1):385–391CrossRefGoogle Scholar
  11. 11.
    Yoriya S, Chumphu A (2015) Anodic TiO2 nanorod arrays and surface wettability. Int J Electrochem Sci 10:9286–9296Google Scholar
  12. 12.
    Qasim AK, Jamil LA, Chen Q (2017) Synthesis and characterization of photocatalytic performance of rutile-Tio2 nanorod arrays for solar hydrogen generation. Sci J Univ Zakho 5(1):79–87CrossRefGoogle Scholar
  13. 13.
    Gao M, Li Y, Guo M, Zhang M, Wang X (2012) Effect of substrate pretreatment on controllable growth of TiO2 nanorod arrays. J Mater Sci Technol 28(7):577–586CrossRefGoogle Scholar
  14. 14.
    Nunes D, Pimentel A, Santos L, Barquinha P, Fortunato E, Martins R (2017) Photocatalytic TiO2 nanorod spheres and arrays compatible with flexible applications. Catalysts 7(2):60CrossRefGoogle Scholar
  15. 15.
    Xie Y, Wei L, Wei G, Li Q, Wang D, Chen Y, …, Jiao J (2013) A self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale Res Lett 8(1):188CrossRefGoogle Scholar
  16. 16.
    Wang HE, Chen Z, Leung YH, Luan C, Liu C, Tang Y, …, Lee ST (2010) Hydrothermal synthesis of ordered single-crystalline rutile TiO 2 nanorod arrays on different substrates. Appl Phys Lett 96(26):263104CrossRefGoogle Scholar
  17. 17.
    Guo W, Xu C, Wang X, Wang S, Pan C, Lin C, Wang ZL (2012) Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J Am Chem Soc 134(9):4437–4441CrossRefGoogle Scholar
  18. 18.
    Sadhu S, Jaiswal A, Adyanthaya S, Poddar P (2013) Surface chemistry and growth mechanism of highly oriented, single crystalline TiO2 nanorods on transparent conducting oxide coated glass substrates. RSC Adv 3(6):1933–1940CrossRefGoogle Scholar
  19. 19.
    Soundarrajan P, Sankarasubramanian K, Logu T, Sethuraman K, Ramamurthi K (2014) Growth of rutile TiO2 nanorods on TiO2 seed layer prepared using facile low cost chemical methods. Mater Lett 116:191–194CrossRefGoogle Scholar
  20. 20.
    Aydın C, Benhaliliba M, Al-Ghamdi AA, Gafer ZH, El-Tantawy F, Yakuphanoglu F (2013) Determination of optical band gap of ZnO: ZnAl2O4 composite semiconductor nanopowder materials by optical reflectance method. J Electroceram 31(1–2):265–270CrossRefGoogle Scholar
  21. 21.
    Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, …, Watson GW (2013) Band alignment of rutile and anatase TiO 2. Nat Mater 12(9):798CrossRefGoogle Scholar
  22. 22.
    Zhong P, Ma X, Chen X, Zhong R, Liu X, Ma D, …, Li Z (2015) Morphology-controllable polycrystalline TiO2 nanorod arrays for efficient charge collection in dye-sensitized solar cells. Nano Energy 16: 99–111CrossRefGoogle Scholar
  23. 23.
    Patel SKS, Gajbhiye NS (2012) Room temperature magnetic properties of Cu-doped titanate, TiO2 (B) and anatase nanorods synthesized by hydrothermal method. Mater Chem Phys 132(1):175–179CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Harish Suryawanshi
    • 1
  • D. R. Patil
    • 1
  1. 1.Nanomaterial Research LaboratoryR. C. Patel Arts, Commerce & Science CollegeShirpurIndia

Personalised recommendations