Hydrothermal Synthesis of Tungsten Oxide for the Detection of NO2 Gas

  • R. N. Mulik
  • M. A. Chougule
  • G. D. Khuspe
  • V. B. Patil
Conference paper


Inorganic materials play a significant task in the improvement of chemiresistive gas sensors. We have prepared tungsten oxide (WO3) by hydrothermal method at 150 °C and it has been used for gas sensing applications. The prepared sensor film was characterized by X-ray diffraction (XRD), Raman Spectroscopy, X-ray photoelectron spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) and contact angle. Developed tungsten oxide (WO3) sensor film works excellently at 200 °C operating temperature and shows a higher response to NO2 gas. The chemiresistive metal oxide based sensor is extremely sensitive, steady, and reproducible also has squat response-recovery time.


WO3 sensor XRD XPS no2 sensing 


  1. 1.
    Waghuley SA, Yenorkar SM, Yawale SS, Yawale SP (2008) Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sensors Actuators B 128:366–373CrossRefGoogle Scholar
  2. 2.
    Zhang HL, Liu ZF, Yang JQ, Guo W, Zhu LJ, Zheng WJ (2014) Temperature and acidity effects on WO3 nanostructures and gas-sensing properties of WO3 nanoplates. Mater Res Bull 57:260–267CrossRefGoogle Scholar
  3. 3.
    Kida T, Nishiyama A, Yuasa M, Shimanoe K, Yamazoe N (2009) Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method. Sensors Actuators B Chem 135:568–574CrossRefGoogle Scholar
  4. 4.
    Xiang Q, Meng GF, Zhao HB, Zhang Y, Li H, Ma MJ, Xu JQ (2010) Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J Phys Chem C 114:2049–2055CrossRefGoogle Scholar
  5. 5.
    An X, Yu JC, Wang Y, Hu Y, Yu X, Zhang G (2012) WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J Mater Chem 22:8525–8531CrossRefGoogle Scholar
  6. 6.
    Balaji S, Djaoued Y, Albert AS, Ferguson RZ, Bruning R (2009) Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows. Chem Mater 21:1381–1389CrossRefGoogle Scholar
  7. 7.
    Reyes JD, Castillo-Ojeda R, Galván-Arellano M, Zaca-Moran O (2013) Characterization of WO3 thin films grown on silicon by HFMOD. Adv Condens Matter Phys 591787:1–9CrossRefGoogle Scholar
  8. 8.
    Mane AT, Kulkarni SB, Navale ST, Ghanwat AA, Shinde NM, Kim JH, Patil VB (2014) NO2 sensing properties of nanostructured tungsten oxide thin films. Ceram Int 40:16495–16502CrossRefGoogle Scholar
  9. 9.
    Bertus LM, Faure C, Danine A, Labrugere C, Campetb G, Rougier A, Duta A (2013) Synthesis and characterization of WO3 thin films by surfactant assisted spray pyrolysis for electro chromic applications. Mater Chem Phys 140:49–59CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. N. Mulik
    • 1
  • M. A. Chougule
    • 2
  • G. D. Khuspe
    • 3
  • V. B. Patil
    • 4
  1. 1.D B F Dayanand College of Arts And ScienceSolapurIndia
  2. 2.Department of PhysicsAnandibai Raorane Arts, Commerce & Science CollegeVaibhavwadiIndia
  3. 3.NK Orchid College of Engineering & TechnologySolapurIndia
  4. 4.School of Physical SciencesSolapur UniversitySolapurIndia

Personalised recommendations