Advertisement

Anaerobic Digestion, Enhancement in Biogas Production and Quality Improvement

  • M. B. KulkarniEmail author
  • P. M. Ghanegaonar
Conference paper

Abstract

The present experimental work explores an environment-friendly solution to the problem of floral waste disposal and search for a sustainable energy source in the Indian scenario. The work comprises attempts for enhancement in biogas production and improvement in biogas quality for widespread uses. A novel alkaline chemical pretreatment applied to floral waste using sodium carbonate increases the biogas output by 106%, with a saving in the cost of chemical pretreatment up to 96%, in comparison with the traditional sodium hydroxide pretreatment. Also, solar heating of the digester increases the biogas output by 122%. Enrichment of methane content in biogas up to 85.07% and hydrogen sulfide efficiency of 87.50% is achieved by using chemical absorption technique in packed column reactors. Implementation of the proposed low-cost techniques on a large scale has a potential to fulfill increasing energy demands in the Indian context.

Keywords

Anaerobic digestion Chemical pretreatment Solar heating of the digester Biogas upgradation Chemical absorption technique 

References

  1. 1.
    Rashed M, Torii S (2015) Removal of hydrogen sulfide (H2S) from biogas using zero-valent iron. J Clean Energy Technol 3(6):428–432CrossRefGoogle Scholar
  2. 2.
    Monnet F (2003) An introduction to anaerobic digestion of organic wastes. Final reportGoogle Scholar
  3. 3.
    Shah D, Nagarseth H (2015) Low-cost biogas purification system for application of bio CNG as fuel for automobile engines. Int J Innov Sci Eng Technol 2(6):308–312Google Scholar
  4. 4.
    Amosa M, Mohammed I, Yaro S (2010) Sulphide scavengers in oil and gas industry – a review. NAFTA 61(2):85–92Google Scholar
  5. 5.
    Bharathiraja B, Sudharsana T, Jaymuthunagai J, Praveenkumar R, Chozavendhan S, Iyyappan J (2018) Biogas production – a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sust Energ Rev 90:570–582CrossRefGoogle Scholar
  6. 6.
    Wang A, Li W, Yu H (2012) Advances in biogas technology. Adv Biochem Eng Biotechnol 128:119–141Google Scholar
  7. 7.
    Mittal S, Ahlgen E, Shukla P (2018) Barriers to biogas dissemination in India: a review. Energy Policy 122:361–370CrossRefGoogle Scholar
  8. 8.
    Mandal T, Mandal N (1997) Comparative study of biogas production from different waste materials. Energy Convers Manag 38(7):679–683CrossRefGoogle Scholar
  9. 9.
    Alkanok G, Demirel B, Turgut O (2014) Determination of biogas generation potential as a renewable energy source from supermarket wastes. Waste Manag 34(1):134–140CrossRefGoogle Scholar
  10. 10.
    Ranjitha J, Vijayalakshmi S, Kumar V, Ralph N (2014) Production of biogas from flowers and vegetable wastes using anaerobic digestion. Int J Res Eng Technol 3(8):279–283CrossRefGoogle Scholar
  11. 11.
    Singh P, Bajpai U (2011) Anaerobic digestion of flower waste for methane production: an alternate energy source. Environ Prog Sustain Energy 31(4):637–641CrossRefGoogle Scholar
  12. 12.
    Singh S, Rathore M, Tyagi S (2007) Feasibility study of biogas production from flower waste. Indian J Environ Prot 27(7):597–603Google Scholar
  13. 13.
    Sambo A, Garba B, Danshehu B (1995) Effect of some operating parameters on biogas production rate. Renew Energy 6(3):343–344CrossRefGoogle Scholar
  14. 14.
    Mandal T, Mandal N (1998) Biomethanation of some waste materials with pure metallic magnesium catalyst. Energy Convers Manag 39(11):1177–1179CrossRefGoogle Scholar
  15. 15.
    Sambusiti C, Monlau F, Ficara E, Carrere H, Malpei F (2013) A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl Energy 104:62–70CrossRefGoogle Scholar
  16. 16.
    Sambusiti C, Ficara E, Malpei F, Steyer J, Carrere H (2012) Influence of alkaline pre-treatment conditions on structural features and methane production from ensiled sorghum forage. Chem Eng J 211–212:488–492CrossRefGoogle Scholar
  17. 17.
    Agrahari R, Tiwari G (2011) Parametric study of portable floating type biogas plant. Bioenergy Technology, World Renewable Energy conference, 404–410Google Scholar
  18. 18.
    Kocar G, Eryasar A (2007) An application of solar energy storage in gas: solar heated biogas plants. Energy Sources Part A 29(16):1513–1520CrossRefGoogle Scholar
  19. 19.
    Kumar V, Kasturi Bai R (2008) Solar greenhouse assisted biogas plant in hilly region: a field study. Sol Energy 82(10):911–917CrossRefGoogle Scholar
  20. 20.
    Mashad H, Zhang R (2010) Biogas production from co-digestion of dairy manures and food wastes. Bioresour Technol 101(11):4021–4028CrossRefGoogle Scholar
  21. 21.
    Nayono S, Gallert C, Winter J (2010) Co-digestion of press water and food waste in a bio-waste digester for improvement of biogas production. Bioresour Technol 101(18):6987–6993CrossRefGoogle Scholar
  22. 22.
    Wu W (2010) Anaerobic co-digestion of biomass for methane production: recent research achievements, 1–10Google Scholar
  23. 23.
    Gurav M, Pathade G (2011) Production of vermicompost from temple waste (Nirmalya): a case study. Univers J Environ Res Technol 1(2):182–192Google Scholar
  24. 24.
    Elango G, Govindasamy R (2018) Analysis and utilization of temple waste flowers in Coimbatore district. Environ Sci Pollut Res 25(11):10688–10700CrossRefGoogle Scholar
  25. 25.
    Singh P, Borthakur A, Singh R, Awasthi S, Pal D, Srivastava P, Tiwary D, Mishra P (2017) Utilization of temple floral waste for extraction of valuable products: a close loop approach towards environmental sustainability and waste management. Pollution 3(1):39–45Google Scholar
  26. 26.
    Kapdi S, Vijay V, Rajesh S, Prasad R (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 30(8):1195–1202CrossRefGoogle Scholar
  27. 27.
    Abdeen F, Mel M, Jami M, Ihasan S, Ismail A (2016) A review of chemical absorption of carbon dioxide for biogas upgrading. Chin J Chem Eng 24(6):693–702CrossRefGoogle Scholar
  28. 28.
    Rashed M, Karim M, Rahman M, Asiri A, Torii S (2016) Methane enrichment of biogas by carbon dioxide fixation with calcium hydroxide and activated carbon. J Taiwan Inst Chem Eng 58:476–481CrossRefGoogle Scholar
  29. 29.
    Mel M, Noorlaili W, Ihsan S, Ismail A, Yaacob S (2014) Purification of biogas by absorption into calcium hydroxide Ca(OH)2 solution. In: Second international conference Second Science Trial Program (KTP 02) proceedingsGoogle Scholar
  30. 30.
    Ghatak M, Mahanta P (2016) Biogas purification using chemical absorption. Int J Eng Technol 8(3):1600–1605Google Scholar
  31. 31.
    Srichat A, Suntivarakorn R, Kamwilaisak K (2017) A development of biogas purification system using calcium hydroxide and amine solution. Energy Procedia 138:441–445CrossRefGoogle Scholar
  32. 32.
    Horikawa M, Rossi F, Gimenes M, Costa C, da Silva M (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21(3):415–442CrossRefGoogle Scholar
  33. 33.
    Magomnang A, Villanueva E (2015) Utilization of the uncoated steel wool for the removal of hydrogen sulphide from biogas. Int J Min Metall Mech Eng 3(3):108–111Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.SVERI’s COEPandharpurIndia
  2. 2.SCOE Research CenterSPPUPuneIndia
  3. 3.Keystone School of EngineeringPuneIndia

Personalised recommendations