Presumable Applications of Deep Learning for Cellular Automata Identification

  • Anton PopovEmail author
  • Alexander Makarenko
Conference paper
Part of the Proceedings of the International Neural Networks Society book series (INNS, volume 1)


It is considered the prospects of deep learning applications for identification problems for cellular automata (CA): classical CA, CA with memory and with strong anticipatory property are examined. Some identification problems for neighbors, rules, coefficients of CA are discussed. One simplest example of deep learning for classical CA is described. Some possibilities of deep learning application for identification problems for CA with memory and anticipation are proposed. The case of of deep learning for the systems with multivalued behavior had been proposed.


Deep learning Cellular automata Identification Memory Strong anticipation Multivaluedness 


  1. 1.
    Adamatsky, A.: Identification of cellular automata rules (1994)Google Scholar
  2. 2.
    Aggarwal, C.C.: Neural Networks and Deep Learning. A Textbook (2018).
  3. 3.
    Bandini, S., Mauri, G.: Multilayered cellular automata. Theor. Comput. Sci. 217(1), 99–113 (1999). Scholar
  4. 4.
    Bolt, W., Baetens, J., De Baets, B.: Idenmtifying CAs with evolution algorithms. In: Proceedings of the International Conference on AUTOMATA-2013. Giessen Univ Press, pp. 11–20 (2013)Google Scholar
  5. 5.
    Krushinsky, D., Makarenko, A: Cellular automata with anticipation. examples and presumable applications. In: Dubois, D.M. (ed.) AIP Conference Proceedings, USA, vol. 1303, pp. 246–254 (2010)Google Scholar
  6. 6.
    Dubois, D.M.: Generation of fractals from incursive automata, digital diffusion and wave equation systems. BioSystems 43(2), 97–114 (1997). Scholar
  7. 7.
    Dubois, D.M.: Computing anticipatory systems with incursion and hyperincursion. Int. J. Comput. Anticip. Syst. 2, 3–14 (1998). Scholar
  8. 8.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.orgzbMATHGoogle Scholar
  9. 9.
    Ilachinski, A.: Cellular Automata A discrete Universe. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  10. 10.
    Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334(1–3), 3–33 (2005). Scholar
  11. 11.
    Makarenko, A.: Multivaluedness aspects in self-organization, complexity and computatios investigations by strong anticipation. In: Stoop, R., Chedjou, J., Li, Z., Kyamakya, K., Mathis, W. (eds.) Recent Advances in Nonlinear Dynamics and Sinchronization, pp. 33–54. Springer, Cham (2018). Scholar
  12. 12.
    Martinez, G.J., Adamatzky, A., Alonso-Sanz, A.: Complex dynamics of elementary cellular automata emerging from chaotic rules. Int. J. Bifurc. Chaos 1274(2) (2010).
  13. 13.
    Rosen, R.: Anticipatory Systems. Philosophical, Mathematical, and Methodological Foundations, vol. 39. Springer, New York (2008)Google Scholar
  14. 14.
    Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., Van Den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017). Scholar
  15. 15.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002). http://www.wolframscience.comzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute for Applied System AnalysisNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KievUkraine

Personalised recommendations