Laboratory Setup, Equipment, and Protocols

  • Julieann O’NeillEmail author
  • Laura Bourette


A pediatric exercise laboratory should have sufficient space to comfortably accommodate the equipment, which should be able to serve both pediatric and adult patients. It should also have space for the parents of pediatric patients to sit during the test. The temperature should be maintained in the range of 20 °C (68 °F) to 24 °C (75 °F) with a relative humidity between 50% and 60%.


Cycle ergometer Motorized treadmill Electrocardiograph Metabolic cart Blood pressure cuff Pulse oximeter Stress echocardiography Code cart Bruce treadmill protocol Cardiopulmonary exercise testing 


  1. 1.
    Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905–20.CrossRefGoogle Scholar
  2. 2.
    Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128(8):873–934.CrossRefGoogle Scholar
  3. 3.
    Wasserman K, Hansen DA, Sue DY, Stringer WW, Sietsema KE, Sun XG, et al. Principles of exercise testing and interpretation. 5th ed. Philadelphia: Lippincott; 2012. p. 129–53.Google Scholar
  4. 4.
    ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7.Google Scholar
  5. 5.
    Olsson LG, Swedberg K, Clark AL, Witte KK, Cleland JG. Six minute corridor walk test as an outcome measure for the assessment of treatment in randomized, blinded intervention trials of chronic heart failure: a systematic review. Eur Heart J. 2005;26(8):778–93.CrossRefGoogle Scholar
  6. 6.
    Gratz A, Hess J, Hager A. Peak oxygen uptake and exercise capacity: a reliable predictor of quality of life? Reply. Eur Heart J. 2009;30:1674–5.CrossRefGoogle Scholar
  7. 7.
    Cumming GR, Everatt D, Hastman L. Bruce treadmill test in children: normal values in a clinic population. Am J Cardiol. 1978;41(1):69–75.CrossRefGoogle Scholar
  8. 8.
    Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary exercise testing in pediatrics. Ann Am Thorac Soc. 2017;14(Supplement_1):S123–S8.CrossRefGoogle Scholar
  9. 9.
    Sabath RJ, White DA, K.M. T. Exercise testing protocols. In: Rowland TW, editor. Cardiopulmonary exercise testing in children and adolescents. Champaign: Human Kinetics; 2018. p. 23–39.Google Scholar
  10. 10.
    Rhodes J. Exercise testing. In: Keane JF, Lock JE, Fyler DC, editors. Nadas’ pediatric cardiology. Philadelphia: Elsevier; 2006. p. 275–87.Google Scholar
  11. 11.
    Kane DA, Fulton DR, Saleeb S, Zhou J, Lock JE, Geggel RL. Needles in hay: chest pain as the presenting symptom in children with serious underlying cardiac pathology. Congenit Heart Dis. 2010;5(4):366–73.CrossRefGoogle Scholar
  12. 12.
    Kyle WB, Macicek SL, Lindle KA, Kim JJ, Cannon BC. Limited utility of exercise stress tests in the evaluation of children with chest pain. Congenit Heart Dis. 2012;7(5):455–9.CrossRefGoogle Scholar
  13. 13.
    Kane DA, Friedman KG, Fulton DR, Geggel RL, Saleeb SF. Needles in Hay II: detecting cardiac pathology by the pediatric chest pain standardized clinical assessment and management plan. Congenit Heart Dis. 2016;11(5):396–402.CrossRefGoogle Scholar
  14. 14.
    Friedman KG, Kane DA, Rathod RH, Renaud A, Farias M, Geggel R, et al. Management of pediatric chest pain using a standardized assessment and management plan. Pediatrics. 2011;128(2):239–45.CrossRefGoogle Scholar
  15. 15.
    Anderson PA, Sleeper LA, Mahony L, Colan SD, Atz AM, Breitbart RE, et al. Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol. 2008;52(2):85–98.CrossRefGoogle Scholar
  16. 16.
    Atz AM, Zak V, Mahony L, Uzark K, D’Agincourt N, Goldberg DJ, et al. Longitudinal outcomes of patients with single ventricle after the Fontan procedure. J Am Coll Cardiol. 2017;69(22):2735–44.CrossRefGoogle Scholar
  17. 17.
    Sleeper LA, Anderson P, Hsu DT, Mahony L, McCrindle BW, Roth SJ, et al. Design of a large cross-sectional study to facilitate future clinical trials in children with the Fontan palliation. Am Heart J. 2006;152(3):427–33.CrossRefGoogle Scholar
  18. 18.
    Paridon SM, Mitchell PD, Colan SD, Williams RV, Blaufox A, Li J, et al. A cross-sectional study of exercise performance during the first two decades of life following the Fontan operation. J Am Coll Cardiol. 2008;52:99–107.CrossRefGoogle Scholar
  19. 19.
    Karamlou T, Poynter JA, Walters HL 3rd, Rhodes J, Bondarenko I, Pasquali SK, et al. Long-term functional health status and exercise test variables for patients with pulmonary atresia with intact ventricular septum: a Congenital Heart Surgeons Society study. J Thorac Cardiovasc Surg. 2013;145(4):1018–25; discussion 25-7CrossRefGoogle Scholar
  20. 20.
    Meadows J, Lang P, Marx G, Rhodes J. Fontan fenestration closure has no acute effect on exercise capacity but improves ventilatory response to exercise. J Am Coll Cardiol. 2008;52(2):108–13.CrossRefGoogle Scholar
  21. 21.
    Rhodes J, Curran TJ, Camil L, Rabideau NC, Fulton DR, Gauthier NS, et al. Impact of cardiac rehabilitation on the exercise function of children with serious congenital heart disease. Pediatrics. 2005;116:1339–45.CrossRefGoogle Scholar
  22. 22.
    Rhodes J, Dave A, Pulling MC, Geggel RL, Marx GR, Fulton DR, et al. Effect of pulmonary artery stenoses on the cardiopulmonary response to exercise following repair of tetralogy of Fallot. Am J Cardiol. 1998;81(10):1217–9.CrossRefGoogle Scholar
  23. 23.
    Sutton NJ, Peng L, Lock JE, Lang P, Marx GR, Curran TJ, et al. Effect of pulmonary artery angioplasty on exercise function after repair of tetralogy of Fallot. Am Heart J. 2008;155(1):182–6.CrossRefGoogle Scholar
  24. 24.
    van Leeuwen JC, Driessen JM, Kersten ET, Thio BJ. Assessment of exercise-induced bronchoconstriction in adolescents and young children. Immunol Allergy Clin N Am. 2013;33(3):381–94, viii–ixCrossRefGoogle Scholar
  25. 25.
    MacCallum DS, Comeau D. Exercise-induced bronchoconstriction. Curr Sports Med Rep. 2016;15(3):128–9.CrossRefGoogle Scholar
  26. 26.
    Pasnick SD, Carlos WG 3rd, Arunachalam A, Celestin FM, Parsons JP, Hallstrand TS, et al. Exercise-induced bronchoconstriction. Ann Am Thorac Soc. 2014;11(10):1651–2.CrossRefGoogle Scholar
  27. 27.
    Goebel B, Arnold R, Koletzki E, Ulmer HE, Eichhorn J, Borggrefe M, et al. Exercise tissue Doppler echocardiography with strain rate imaging in healthy young individuals: feasibility, normal values and reproducibility. Int J Cardiovasc Imaging. 2007;23(2):149–55.CrossRefGoogle Scholar
  28. 28.
    Poerner TC, Goebel B, Figulla HR, Ulmer HE, Gorenflo M, Borggrefe M, et al. Diastolic biventricular impairment at long-term follow-up after atrial switch operation for complete transposition of the great arteries: an exercise tissue Doppler echocardiography study. J Am Soc Echocardiogr. 2007;20(11):1285–93.CrossRefGoogle Scholar
  29. 29.
    Harada K, Toyono M, Yamamoto F. Assessment of right ventricular function during exercise with quantitative Doppler tissue imaging in children late after repair of tetralogy of Fallot. J Am Soc Echocardiogr. 2004;17(8):863–9.CrossRefGoogle Scholar
  30. 30.
    Roest AA, Lamb HJ, van der Wall EE, Vliegen HW, van den Aardweg JG, Kunz P, et al. Cardiovascular response to physical exercise in adult patients after atrial correction for transposition of the great arteries assessed with magnetic resonance imaging. Heart. 2004;90(6):678–84.CrossRefGoogle Scholar
  31. 31.
    Roest AAW, Helbing WA, Kunz P, van den Aardweg JG, Lamb HJ, Vliegen HW, et al. Exercise MR imaging in the assessment of pulmonary regurgitation and biventricular function in patients after tetralogy of Fallot repair. Radiology. 2002;223:204–11.CrossRefGoogle Scholar
  32. 32.
    Vliegen HW, van Straten A, de Roos A, Roest AAW, Schoof PH, Zwinderman AH, et al. Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacemnt in adults late after repair of tetralogy of Fallot. Circulation. 2002;106:1703–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Exercise Physiology, Department of CardiologyBoston Children’s HospitalBostonUSA
  2. 2.Department of CardiologyBoston Children’s HospitalBostonUSA

Personalised recommendations