Advertisement

Exercise Stress Testing: Diagnostic Utility in the Evaluation of Long QT Syndrome

  • Stephanie F. Chandler
  • Robyn J. Hylind
  • Dominic J. Abrams
Chapter

Abstract

Congenital long QT syndrome (LQTS), an inherited disorder of ventricular repolarization, is characterized by a prolonged QT interval and T-wave morphological changes on the surface electrocardiogram (EKG) with associated symptoms of syncope, seizures, cardiac arrest, and sudden death. Multiple studies in adults and a few in pediatric patients have demonstrated the value of performing exercise stress tests (EST) as a diagnostic tool in the evaluation of patients with suspected LQTS. As LQTS demonstrates reduced penetrance and many patients are asymptomatic, affected individuals with LQTS can be erroneously considered unaffected if only clinical features and resting EKG are utilized for diagnostic purposes. EST—and specifically—QTc interval prolongation during recovery after EST has been demonstrated to be a sensitive screening test for LQTS.

Keywords

Long QT syndrome Torsades de pointes Genetics Exercise stress testing Sudden death 

References

  1. 1.
    Ackerman MJ, Clapham DE. Ion channels–basic science and clinical disease. N Engl J Med. 1997;336:1575–86.CrossRefGoogle Scholar
  2. 2.
    Aziz PF, Wieand TS, Ganley J, Henderson J, Patel AR, Iyer VR, et al. Genotype- and mutation site-specific QT adaptation during exercise, recovery, and postural changes in children with long-QT syndrome. Circ Arrhythm Electrophysiol. 2011;4:867–73.CrossRefGoogle Scholar
  3. 3.
    Tester DJ, Ackerman MJ. Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J Am Coll Cardiol. 2007;49:240–6.CrossRefGoogle Scholar
  4. 4.
    Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120:1761–7.CrossRefGoogle Scholar
  5. 5.
    Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350:1013–22.CrossRefGoogle Scholar
  6. 6.
    Liu JF, Jons C, Moss AJ, McNitt S, Peterson DR, Qi M, et al. Risk factors for recurrent syncope and subsequent fatal or near-fatal events in children and adolescents with long QT syndrome. J Am Coll Cardiol. 2011;57:941–50.CrossRefGoogle Scholar
  7. 7.
    Zareba W, Moss AJ, Locati EH, Lehmann MH, Peterson DR, Hall WJ, et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol. 2003;42:103–9.CrossRefGoogle Scholar
  8. 8.
    Schwartz PJ, Ackerman MJ. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur Heart J. 2013;34:3109–16.CrossRefGoogle Scholar
  9. 9.
    Schwartz PJ, Ackerman MJ, George AL, Wilde AAM. Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol. 2013;62:169–80.CrossRefGoogle Scholar
  10. 10.
    Ruan Y, Liu N, Napolitano C, Priori SG. Therapeutic strategies for long-QT syndrome: does the molecular substrate matter? Circ Arrhythm Electrophysiol. 2008;1:290–7.CrossRefGoogle Scholar
  11. 11.
    Zareba W. Genotype-specific EKG patterns in long QT syndrome. J Electrocardiol. 2006;39:S101–6.CrossRefGoogle Scholar
  12. 12.
    Zhang L, Timothy KW, Vincent GM, Lehmann MH, Fox J, Giuli LC, et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation. 2000;102:2849–55.CrossRefGoogle Scholar
  13. 13.
    Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993;88(2):782–4.CrossRefGoogle Scholar
  14. 14.
    Hofman N, Wilde AAM, Tan HL. Diagnostic criteria for congenital long QT syndrome in the era of molecular genetics: do we need a scoring system? Eur Heart J. 2007;28:1399–9.CrossRefGoogle Scholar
  15. 15.
    Zareba W. Challenges of diagnosing long QT syndrome in patients with nondiagnostic resting QTc. J Am Coll Cardiol. 2010;55:1962–4.CrossRefGoogle Scholar
  16. 16.
    Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation. 1999;99:529–33.CrossRefGoogle Scholar
  17. 17.
    Goldenberg I, Mathew J, Moss AJ, McNitt S, Peterson DR, Zareba W, et al. Corrected QT variability in serial electrocardiograms in long QT syndrome: the importance of the maximum corrected QT for risk stratification. J Am Coll Cardiol. 2006;48:1047–52.CrossRefGoogle Scholar
  18. 18.
    Malik M, Färbom P, Batchvarov V, Hnatkova K, Camm AJ. Relation between QT and RR intervals is highly individual among healthy subjects: implications for heart rate correction of the QT interval. Heart. 2002;87:220–8.CrossRefGoogle Scholar
  19. 19.
    Vincent GM, Schwartz PJ, Denjoy I, Swan H, Bithell C, Spazzolini C, et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment “failures”. Circulation. 2009;119(2):215–21.CrossRefGoogle Scholar
  20. 20.
    Vincent GM, Timothy KW, Leppert M, Keating M. The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. N Engl J Med. 1992;327:846–52.CrossRefGoogle Scholar
  21. 21.
    Horner JM, Horner MM, Ackerman MJ. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2011;8:1698–704.CrossRefGoogle Scholar
  22. 22.
    Wong JA, Gula LJ, Klein GJ, Yee R, Skanes AC, Krahn AD. Utility of treadmill testing in identification and genotype prediction in long-QT syndrome. Circ Arrhythm Electrophysiol. 2010;3(2):120–5.CrossRefGoogle Scholar
  23. 23.
    Katagiri-Kawade M, Ohe T, Arakaki Y, Kurita T, Shimizu W, Kamiya T, Orii T. Abnormal response to exercise, face immersion, and isoproterenol in children with the long QT syndrome. Pacing Clin Electrophysiol. 1995;18(12 Pt 1):2128–34.CrossRefGoogle Scholar
  24. 24.
    Swan H, Viitasalo M, Piippo K, Laitinen P, Kontula K, Toivonen L. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. J Am Coll Cardiol. 1999;34(3):823–9.CrossRefGoogle Scholar
  25. 25.
    Swan H, Toivonen L, Viitasalo M. Rate adaptation of QT intervals during and after exercise in children with congenital long QT syndrome. Eur Heart J. 1998;19:508–13.CrossRefGoogle Scholar
  26. 26.
    Paavonen KJ, Swan H, Piippo K, Hokkanen L, Laitinen P, Viitasalo M, et al. Response of the QT interval to mental and physical stress in types LQT1 and LQT2 of the long QT syndrome. Heart. 2001;86(1):39–44.CrossRefGoogle Scholar
  27. 27.
    Takenaka K, Ai T, Shimizu W, Kobori A, Ninomiya T, Otani H, et al. Exercise stress test amplifies genotype-phenotype correlation in the LQT1 and LQT2 forms of the long-QT syndrome. Circulation. 2003;107(6):838–44.CrossRefGoogle Scholar
  28. 28.
    Chattha IS, Sy RW, Yee R, Gula LJ, Skanes AC, Klein GJ, et al. Utility of the recovery electrocardiogram after exercise: a novel indicator for the diagnosis and genotyping of long QT syndrome? Heart Rhythm. 2010;7(7):906–11.CrossRefGoogle Scholar
  29. 29.
    Sy RW, van der Werf C, Chattha IS, Chockalingam P, Adler A, Healey JS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124(20):2187–94.CrossRefGoogle Scholar
  30. 30.
    Shimizu W, Antzelevitch C. Cellular basis for the EKG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation. 1998;98:2314–22.CrossRefGoogle Scholar
  31. 31.
    Moss AJ, Long QT. Syndrome. JAMA. 2003;289:2041–4.CrossRefGoogle Scholar
  32. 32.
    Dausse E, Berthet M, Denjoy I, André-Fouet X, Cruaud C, Bennaceur M, et al. A mutation in HERG associated with notched T waves in long QT syndrome. J Mol Cell Cardiol. 1996;28(8):1609–15.CrossRefGoogle Scholar
  33. 33.
    Krahn AD, Klein GJ, Yee R. Hysteresis of the RT interval with exercise: a new marker for the long-QT syndrome? Circulation. 1997;96:1551–6.CrossRefGoogle Scholar
  34. 34.
    Dionne A, Fournier A, Dahdah N, Abrams D, Khairy P, Abadir S. Dynamic QT interval changes from supine to standing in healthy children. Can J Cardiol. 2018;34(1):66–72.CrossRefGoogle Scholar
  35. 35.
    Vyas H, Hejlik J, Ackerman MJ. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: diagnostic accuracy of the paradoxical QT response. Circulation. 2006;113:1385–92.CrossRefGoogle Scholar
  36. 36.
    Berger WR, Gow RM, Kamberi S, Cheung M, Smith KR, Davis AM. The QT and corrected QT interval in recovery after exercise in children. Circ Circ Arrhythm Electrophysiol. 2011;4(4):448–55.CrossRefGoogle Scholar
  37. 37.
    Benatar A, Decraene T. Comparison of formulae for heart rate correction of QT interval in exercise EKGs from healthy children. Heart. 2001;86:199–202.CrossRefGoogle Scholar
  38. 38.
    Moss AJ, Zareba W, Benhorin J, Locati EH, Hall WJ, Robinson JL, et al. EKG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation. 1995;92(10):2929–34.CrossRefGoogle Scholar
  39. 39.
    Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantù F, Towbin JA, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation. 1995;92(12):3381–6.CrossRefGoogle Scholar
  40. 40.
    Tester DJ, Ackerman MJ. Genetics of long QT syndrome. Methodist Debakey Cardiovasc J. 2014;10:29–33.CrossRefGoogle Scholar
  41. 41.
    Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103(1):89–95.CrossRefGoogle Scholar
  42. 42.
    Kaltman JR, Ro PS, Stephens P, McBride MG, Cohen MI, Tanel RE, et al. Effects of beta-adrenergic antagonists on the QT measurements from exercise stress tests in pediatric patients with long QT syndrome. Pediatr Cardiol. 2003;24(6):553–8.CrossRefGoogle Scholar
  43. 43.
    Sy RW, van der Werf C, Chattha IS, Chockalingam P, Adler A, Healey JS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124(20):2187–94.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephanie F. Chandler
    • 1
    • 2
  • Robyn J. Hylind
    • 3
  • Dominic J. Abrams
    • 4
    • 5
  1. 1.Department of CardiologyAnn and Robert H. Lurie Children’s HospitalChicagoUSA
  2. 2.Department of PediatricsNorthwestern Feinberg School of MedicineChicagoUSA
  3. 3.Department of CardiologyBoston Children’s HospitalBostonUSA
  4. 4.Department of PediatricsHarvard Medical SchoolBostonUSA
  5. 5.Inherited Cardiac Arrhythmia Program, Department of CardiologyBoston Children’s HospitalBostonUSA

Personalised recommendations