Advertisement

Breast Disease pp 757-779 | Cite as

Onco-Cardiology for Breast Cancer

  • Ozlem SoranEmail author
Chapter

Abstract

The purpose of this chapter is to underline the importance of cardiotoxicity, to identify the patients at risk for cardiotoxicity, and to outline strategies for the management of cardiac adverse events in patients with breast cancer undergoing systemic therapy. Several trials have suggested that regular assessment of cardiac function and parameters, including serum lipids that might be affected by adjuvant therapy, the management of hypertension, and weight control, is important to minimize cardiovascular risks, especially in women aged >65 years, who constitute >50% of the breast cancer population. The decision to use one specific cancer treatment regimen should depend on its toxicity and efficacy profile. Reducing the severity and frequency of adverse cardiac events may improve the quality of life for patients undergoing systemic therapy for breast cancer and offer continuation of the well-documented and beneficial therapies. Management approaches should consider risk management plans to support the use of life-saving systemic therapeutics agents and avoid the interruption of their use due to the mismanagement of side effects. Cancer patients are vulnerable to many conditions; they can be protected from adverse events with better therapy regimens and regular assessment.

Keywords

Cardiotoxicity Breast cancer Adverse cardiovascular effects Cardio-oncology 

References

  1. 1.
    Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA Cancer J Clin. 2002;52:23–47.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    NCI Dictionary of Cancer Terms http://www.cancer.gov/dictionary.
  3. 3.
    Raschi E, Ponti FD. Cardiovascular toxicity of anticancer-targeted therapy: emerging issues in the era of cardio-oncology. Intern Emerg Med. 2012;7:113–31.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7.CrossRefGoogle Scholar
  5. 5.
    Ewer MS, Ali MK, Mackay B, Wallace S, Valdivieso M, Legha SS, et al. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J Clin Oncol. 1984;2:112–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Jessup M, Abraham WT, Casey DE. 2009 focused update ACCF/AHA guidelines for the diagnosis and management of heart failure in adults. J Am Coll Cardiol. 2009;53:1343–82.CrossRefGoogle Scholar
  8. 8.
    Yancy CW, et al. ACCF/AHA heart failure guideline. Circulation. 2013;128:e240–327.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Soran OZ, Piña IL, Lamas GA, Kelsey SF, Selzer F, Pilotte J, Lave JR, Feldman AM. A randomized clinical trial of the clinical effects of enhanced heart failure monitoring using a computer-based telephonic monitoring system in older minorities and women. J Card Fail. 2008;14:711–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Soran O, Vargo JA, Polat AV, Soran A, Sumkin J, Beriwal S. No association between left-breast radiation therapy or breast arterial calcification and long-term cardiac events in patients with breast cancer. J Women’s Health (Larchmt). 2014;23:1005–111.CrossRefGoogle Scholar
  11. 11.
    Kaklamani VG, Gradishar WJ. Epirubicin versus doxorubicin: which is the anthracycline of choice for the treatment of breast cancer? Clin Breast Cancer. 2003;4(Suppl 1):S26–33.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339:900–5.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF. Topoisomerase II beta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67:8839–46.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23:2900–2.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, Jones A. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10:337.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D’Ascenzo F, Malavasi V, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 2013;112:1980–4.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.CrossRefGoogle Scholar
  18. 18.
    Ryberg M, Nielsen D, Skovsgaard T, Hansen J, Jensen BV, Dombernowsky P. Epirubicin cardiotoxicity: an analysis of 469 patients with metastatic breast cancer. J Clin Oncol. 1998;16:3502–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Minotti G, Licata S, Saponiero A, Menna P, Calafiore AM, Di Giammarco G, et al. Anthracycline metabolism and toxicity in human myocardium: comparisons between doxorubicin, epirubicin, and a novel disaccharide analogue with a reduced level of formation and (4Fe-4S) reactivity of its secondary alcohol metabolite. Chem Res Toxicol. 2000;13:1336–41.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ryberg M, Nielsen D, Cortese G, Nielsen G, Skovsgaard T, Andersen PK. New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst. 2008;100:1058–67.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    van Dalen EC, van der Pal HJ, Caron HN, Kremer LC. Different dosage schedules for reducing cardiotoxicity in cancer patients receiving anthracycline chemotherapy. Cochrane Database Syst Rev. 2006;4:CD005008.Google Scholar
  22. 22.
    Giotta F, Lorusso V, Maiello E, Filippelli G, Valerio MR, Caruso M, et al. Liposomal-encapsulated doxorubicin plus cyclophosphamide as first-line therapy in metastatic breast cancer: a phase II multicentric study. Ann Oncol. 2007;18 Suppl 6:vi66–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Brain EG, Mertens C, Girre V, Rousseau F, Blot E, Abadie S, et al. Impact of liposomal doxorubicin-based adjuvant chemotherapy on autonomy in women over 70 with hormone-receptor-negative breast carcinoma: a French Geriatric Oncology Group (GERICO) phase II multicentre trial. Crit Rev Oncol Hematol. 2011;80:160–70.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Rayson D, Suter TM, Jackisch C, van der Vegt S, Bermejo B, van den Bosch J, et al. Cardiac safety of adjuvant pegylated liposomal doxorubicin with concurrent trastuzumab: a randomized phase II trial. Ann Oncol. 2012;23(7):1780–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Joo KI, Xiao L, Liu S, Liu Y, Lee CL, Conti PS, et al. Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials. 2013;34:3098–109.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Liu Y, Fang J, Kim YJ, Wong MK, Wang P. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm. 2014;11:1651–61.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Valachis A, Nilsson C. Cardiac risk in the treatment of breast cancer: assessment and management. Breast Cancer Targets Ther. 2015;7:21–35.CrossRefGoogle Scholar
  28. 28.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sparano JA. Taxanes for breast cancer: an evidence-based review of randomized phase II and phase III trials. Clin Breast Cancer. 2000;1(1):32–40.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Arbuck SG, Strauss H, Rowinsky E, Christian M, Suffness M, Adams J, et al. A reassessment of cardiac toxicity associated with taxol. J Natl Cancer Inst Monogr. 1993;15:117–30.Google Scholar
  31. 31.
    Rowinsky EK, McGuire WP, Guarnieri T, Fisherman JS, Christian MC, Donehower RC, et al. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9:1704–12.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Giordano SH, Booser DJ, Murray JL, Ibrahim NK, Rahman ZU, Valero V, et al. A detailed evaluation of cardiac toxicity: a phase II study of doxorubicin and one- or three-hour-infusion paclitaxel in patients with metastatic breast cancer. Clin Cancer Res. 2002;8:3360–8.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Holmes FA, Valero V, Walters RS, Theriault RL, Booser DJ, Gibbs H, et al. Paclitaxel by 24-hour infusion with doxorubicin by 48-hour infusion as initial therapy for metastatic breast cancer: phase I results. Ann Oncol. 1999;10:403–11.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Jassem J, Pienkowski T, Pluzanska A, Jelic S, Gorbunova V, Berzins J, et al. Doxorubicin and paclitaxel versus fluorouracil, doxorubicin, and cyclophosphamide as first-line therapy for women with metastatic breast cancer: final results of a randomized phase III multicenter trial. J Clin Oncol. 2001;19:1707–15.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Grasselli G, Vigano L, Capri G, Locatelli A, Tarenzi E, Spreafico C, et al. Clinical and pharmacologic study of the epirubicin and paclitaxel combination in women with metastatic breast cancer. J Clin Oncol. 2001;19:2222–36.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Gennari A, Salvadori B, Donati S, Bengala C, Orlandini C, Danesi R, et al. Cardiotoxicity of epirubicin/paclitaxel-containing regimens: role of cardiac risk factors. J Clin Oncol. 1999;17:3596–602.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gianni L, Baselga J, Eiermann W, Guillem Porta V, Semiglazov V, et al. Feasibility and tolerability of sequential doxorubicin/paclitaxel followed by cyclophosphamide, methotrexate, and fluorouracil and its effects on tumor response as preoperative therapy. Clin Cancer Res. 2005;11:8715–21.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Fountzilas G, Skarlos D, Dafni U, Gogas H, Briasoulis E, Pectasides D, et al. Postoperative dose-dense sequential chemotherapy with epirubicin, followed by CMF with or without paclitaxel, in patients with high-risk operable breast cancer: a randomized phase III study conducted by the Hellenic Cooperative Oncol Group. Ann Oncol. 2005;16:1762–71.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Nyman DW, Campbell KJ, Hersh E, Long K, Richardson K, Trieu V, et al. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Natl Cancer Inst. 2005;23:7785–93.Google Scholar
  40. 40.
    Brian RJ, Bird H, Swain SM. Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res. 2008;14:14–23.CrossRefGoogle Scholar
  41. 41.
    Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J Clin Oncol. 2010;28:92–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Viani GA, Afonso SL, Stefano EJ, De Fendi LI, Soares FV. Adjuvant trastuzumab in the treatment of her-2-positive early breast cancer: a meta-analysis of published randomized trials. BMC Cancer. 2007;7:153.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Onitilo AA, Engel JM, Stankowski RV. Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug Saf. 2014;5:154–66.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Moja L, Tagliabue L, Balduzzi S, Parmelli E, Pistotti V, Guarneri V, et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev. 2012;4:CD006243.Google Scholar
  45. 45.
    Bowles EJ, Wellman R, Feigelson HS, Onitilo AA, Freedman AN, Delate T, et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012;104:1293–305.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Naumann D, Rusius V, Margiotta C, Nevill A, Carmichael A, Rea D, et al. Factors predicting trastuzumab-related cardiotoxicity in a real-world population of women with HER2+ breast cancer. Anticancer Res. 2013;33:1717–20.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, et al. Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem. 1998;273:10261–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    De Keulenaer GW, Doggen K, Lemmens K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted erbb2 anticancer therapy. Circ Res. 2010;106:35–46.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Russo G, Cioffi G, Di Lenarda A, Tuccia F, Bovelli D, Di Tano G, et al. Role of renal function on the development of cardiotoxicity associated with trastuzumab-based adjuvant chemotherapy for early breast cancer. Intern Emerg Med. 2012;7:439–46.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Perez EA, Suman VJ, Davidson NE, Gralow JR, Kaufman PA, Visscher DW, et al. Cardiac safety analysis of doxorubicin and cyclophosphamide followed by paclitaxel with or without trastuzumab in the North Central Cancer Treatment Group N9831 adjuvant breast cancer trial. J Clin Oncol. 2008;26:1231–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60:2504–12.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Serrano C, Cortés J, De Mattos-Arruda L, Bellet M, Gómez P, Saura C, et al. Trastuzumab-related cardiotoxicity in the elderly: a role for cardiovascular risk factors. Ann Oncol. 2012;23:897–902.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Beauclair S, Formento P, Fischel JL, Lescaut W, Largillier R, Chamorey E, et al. Role of the HER2 (Ile655Val) genetic polymorphism in tumorigenesis and in the risk of trastuzumab-related cardiotoxicity. Ann Oncol. 2007;18:1335–41.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lemieux J, Diorio C, Côté MA, Provencher L, Barabé F, Jacob S, et al. Alcohol and HER2 polymorphisms as risk factor for cardiotoxicity in breast cancer treated with trastuzumab. Anticancer Res. 2013;33:2569–76.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Roca L, Diéras V, Roché H, Lappartient E, Kerbrat P, Cany L, et al. Correlation of HER2, FCGR2A, and FCGR3A gene polymorphisms with trastuzumab related cardiac toxicity and efficacy in a subgroup of patients from UNICANCER-PACS 04 trial. Breast Cancer Res Treat. 2013;139:789–800.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Baselga J, Cortés J, Kim SB, Im SA, Hegg R, Im YH, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:25–32.CrossRefGoogle Scholar
  59. 59.
    Valachis A, Nearchou A, Lind P, Mauri D. Lapatinib, trastuzumab or the combination added to preoperative chemotherapy for breast cancer: a meta-analysis of randomized evidence. Breast Cancer Res Treat. 2012;135:655–62.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Blackwell KL, Burstein HJ, Storniolo AM, Rugo H, Sledge G, Koehler M, et al. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 Study. J Clin Oncol. 2012;30:2585–92.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Valachis A, Nearchou A, Polyzos NP, Lind P. Cardiac toxicity in breast cancer patients treated with dual HER2 blockade. Int J Cancer. 2013;133:2245–52.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke statistics – 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25–146.PubMedPubMedCentralGoogle Scholar
  63. 63.
    British Heart Foundation. European cardiovascular disease statistics. London: British Heart Foundation; 2005.Google Scholar
  64. 64.
    van de Velde CJ, Rea D, Seynaeve C, Putter H, Hasenburg A, Vannetzel JM, et al. Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet. 2011;377:321–31.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.CrossRefGoogle Scholar
  66. 66.
    Braithwaite RS, Chlebowski RT, Lau J, George S, Hess R, Col NF, et al. Meta-analysis of vascular and neoplastic events associated with tamoxifen. J Gen Intern Med. 2003;18:937–47.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    McDonald CC, Alexander FE, Whyte BW, Forrest AP, Stewart HJ, et al. Cardiac and vascular morbidity in women receiving adjuvant tamoxifen for breast cancer in a randomised trial. The Scottish Cancer Trials Breast Group. BMJ. 1995;311:977–80.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Herrington DM, Klein KP. Cardiovascular trials of estrogen replacement therapy. Ann N Y Acad Sci. 2001;949:153–62.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wysowski DK, Honig SF, Beitz J. Uterine sarcoma associated with tamoxifen use. N Engl J Med. 2002;346:1832–3.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Fisher B, Dignam J, Bryant J, Wolmark N. Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors. J Natl Cancer Inst. 1996;88:1529–42.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Aiello EJ, Buist DS, Wagner EH, Tuzzio L, Greene SM, Lamerato LE, et al. Diffusion of AIs for breast cancer therapy between 1996 and 2003 in the Cancer Research Network. Breast Cancer Res Treat. 2008;107:397–403.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Janicke F. Are all AIs the same? A review of the current evidence. Breast. 2004;13(Suppl 1):S10–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Gibson LJ, Dawson CK, Lawrence DH, Bliss JM. AIs for treatment of advanced breast cancer in postmenopausal women. Cochrane Database Syst Rev. 2007;1:CD003370.Google Scholar
  74. 74.
    Thurlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, Forbes JF, et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353:2747–57.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet. 2005;365:60–2.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Coombes RC, Kilburn LS, Snowdon CF, Paridaens R, Coleman RE, Jones SE, et al. Survival and safety of exemestane versus tamoxifen after 2–3 years’ tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet. 2007;369:559–70.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J, et al. Meta-analysis of breast cancer outcomes in adjuvant trials of AIs versus tamoxifen. J Clin Oncol. 2010;28:509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Winer EP, Hudis C, Burstein HJ, Wolff AC, Pritchard KI, Ingle JN, et al. American Society of Clinical Oncology technology assessment on the use of AIs as adjuvant therapy for postmenopausal women with hormone receptor-positive breast cancer: status report 2004. J Clin Oncol. 2005;23:619–29.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thürlimann B, Senn HJ. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol. 2007;18:1133–44.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Jones LW, Haykowsky MJ, Swartz JJ, Douglas PS, Mackey JR. Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol. 2007;50:1435–41.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Esteva FJ, Hortobagyi GN. Comparative assessment of lipid effects of endocrine therapy for breast cancer: implications for cardiovascular disease prevention in postmenopausal women. Breast. 2006;15:301–12.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Walsh BW, Schiff I, Rosner B, Greenberg L, Ravnikar V, Sacks FM. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med. 1991;325:1196–204.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Crivellari D, Sun Z, Coates AS, Price KN, Thürlimann B, Mouridsen H, et al. Letrozole compared with tamoxifen for elderly patients with endocrine-responsive early breast cancer: the BIG 1-98 trial. J Clin Oncol. 2008;26:1972–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Hanrahan EO, Gonzalez-Angulo AM, Giordano SH, Price KN, Thürlimann B, Mouridsen H, et al. Overall survival and cause-specific mortality of patients with stage T1a, bN0M0 breast carcinoma. J Clin Oncol. 2007;25:4952–60.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Cuglan B, Soran O. Cardiovascular adverse effects of aromatase inhibitors in postmenopausal patients diagnosed with breast cancer. Int Heart Vasc Dis J. 2013;1:30–43.Google Scholar
  86. 86.
    Erwin GS, Crisostomo PR, Wang Y, Wang M, Markel TA, Guzman M, et al. Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia. J Surg Res. 2009;152:319–24.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Bolego C, Rossoni G, Fadini GP, Vegeto E, Pinna C, Albiero M, et al. Selective estrogen receptor-alpha agonist provides widespread heart and vascular protection with enhanced endothelial progenitor cell mobilization in the absence of uterotrophic action. FASEB J. 2010;24:2262–72.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Baruscotti I, Barchiesi F, Jackson EK, Imthurn B, Stiller R, Kim JH, et al. Estradiol stimulates capillary formation by human endothelial progenitor cells: role of estrogen receptor-{alpha}/{beta}, heme oxygenase 1, and tyrosine kinase. Hypertension. 2010;56:397–404.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, et al. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res. 1999;43:985–91.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J, et al. Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta. 1772;2007:72–80.Google Scholar
  91. 91.
    Brufsky A, Bundred N, Coleman R, Lambert-Falls R, Mena R, Hadji P, et al. Integrated analysis of zoledronic acid for prevention of AI-associated bone loss in postmenopausal women with early breast cancer receiving adjuvant letrozole. Oncologist. 2008;13:503–14.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Boccardo F, Rubagotti A, Aldrighetti D, Buzzi F, Cruciani G, Farris A, et al. Switching to an AI provides mortality benefit in early breast carcinoma: pooled analysis of 2 consecutive trials. Cancer. 2007;109:1060–7.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Brown SA, Guise TA. Cancer treatment-related bone disease. Crit Rev Eukaryot Gene Expr. 2009;19:47–60.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cuzick J, Sestak I, Baum M, Buzdar A, Howell A, Dowsett M, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol. 2010;11:1135–41.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Baum M, Buzdar A, Cuzick J, Forbes J, Houghton J, Howell A, et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer. 2003;98:1802–10.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Forbes JF, Cuzick J, Buzdar A, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol. 2008;9:45–53.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mouridsen H, Giobbie-Hurder A, Goldhirsch A, Thürlimann B, Paridaens R, Smith I, et al. Letrozole therapy alone or in sequence with tamoxifen in women with breast cancer. N Engl J Med. 2009;361:766–76.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Mouridsen H, Keshaviah A, Coates AS, Rabaglio M, Castiglione-Gertsch M, Sun Z, et al. Cardiovascular adverse events during adjuvant endocrine therapy for early breast cancer using letrozole or tamoxifen: safety analysis of BIG 1-98 trial. J Clin Oncol. 2007;25:5715–22.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Coates AS, Keshaviah A, Thürlimann B, Mouridsen H, Mauriac L, Forbes JF, Paridaens R, et al. Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol. 2007;25:486–92.CrossRefGoogle Scholar
  100. 100.
    Colleoni M, Giobbie-Hurder A, Regan MM, Thürlimann B, Mouridsen H, Mauriac L, et al. Analyses adjusting for selective crossover show improved overall survival with adjuvant letrozole compared with tamoxifen in the BIG 1-98 study. J Clin Oncol. 2011;29:1117–24.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ, et al. Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst. 2005;97:1262–71.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Paridaens RJ, Dirix LY, Beex LV, Nooij M, Cameron DA, Cufer T, et al. Phase III study comparing exemestane with tamoxifen as first-line hormonal treatment of metastatic breast cancer in postmenopausal women: the European Organisation for Research and Treatment of Cancer Breast Cancer Cooperative Group. J Clin Oncol. 2008;26:4883–90.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Robinson A. A review of the use of exemestane in early breast cancer. Ther Clin Risk Manag. 2009;5:91–8.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Bliss JM, Kilburn LS, Coleman RE, Forbes JF, Coates AS, Jones SE, et al. Disease-related outcomes with long-term follow-up: an updated analysis of the intergroup exemestane study. J Clin Oncol. 2012;30:709–17.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Coombes RC, Paridaens R, Jassem J. First mature analysis of the Intergroup Exemestane Study. J Clin Oncol. 2006;24(9s suppl; abstr LBA527)Google Scholar
  106. 106.
    Rea D, Hasenburg A, Seynaeve C. Five years of exemestane as initial therapy compared to 5 years of tamoxifen followed by exemestane: the TEAM trial, a prospective, randomized, phase III trial in postmenopausal women with hormone-sensitive early breast cancer. Cancer Res. 2009;69(24 Suppl 3):Abstract 11.Google Scholar
  107. 107.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Ingle JN. Adjuvant endocrine therapy for postmenopausal women with early breast cancer. Clin Cancer Res. 2006;12:1031s–6.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Mauri D, Pavlidis N, Polyzos NP, Ioannidis JP. Survival with AIs and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J Natl Cancer Inst. 2006;98:1285–91.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Mouridsen HT, Robert NJ. The role of AIs as adjuvant therapy for early breast cancer in postmenopausal women. Eur J Cancer. 2005;41:1678–89.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Morandi P, Rouzier R, Altundag K, Buzdar AU, Theriault RL, Hortobagyi G. The role of AIs in the adjuvant treatment of breast carcinoma: the M. D. Anderson Cancer Center evidence-based approach. Cancer. 2004;101:1482–9.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Henderson IC, Piccart-Gebhart MJ. The evolving role of AIs in adjuvant breast cancer therapy. Clin Breast Cancer. 2005;6:206–15.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Goss PE. Emerging role of AIs in the adjuvant setting. Am J Clin Oncol. 2003;26:S27–33.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Buzdar A, Chlebowski R, Cuzick J, Duffy S, Forbes J, Jonat W, Ravdin P. Defining the role of AIs in the adjuvant endocrine treatment of early breast cancer. Curr Med Res Opin. 2006;22:1575–85.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Boccardo F, Rubagotti A, Guglielmini P, Fini A, Paladini G, Mesiti M, et al. Switching to anastrozole versus continued tamoxifen treatment of early breast cancer. Updated results of the Italian tamoxifen anastrozole (ITA) trial. Ann Oncol. 2006;17 Suppl 7:vii10–4.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Buzdar A. Anastrozole as adjuvant therapy for early-stage breast cancer: implications of the ATAC trial. Clin Breast Cancer. 2003;4 Suppl 1:S42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Wasan KM, Goss PE, Pritchard PH, Shepherd L, Palmer MJ, Liu S, et al. The influence of letrozole on serum lipid concentrations in postmenopausal women with primary breast cancer who have completed 5 years of adjuvant tamoxifen (NCIC CTG MA.17L). Ann Oncol. 2005;16:707–15.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Gandhi S, Verma S. AIs and cardiac toxicity: getting to the heart of the matter. Breast Cancer Res Treat. 2007;106:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    McCloskey EV, Hannon RA, Lakner G, Fraser WD, Clack G, Miyamoto A, et al. Effects of third generation AIs on bone health and other safety parameters: results of an open, randomised, multi-centre study of letrozole, exemestane and anastrozole in healthy postmenopausal women. Eur J Cancer. 2007;43:2523–31.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14:721–40.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012, 23 Suppl 7:vii155–66.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15:1063–93.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Floyd J, Morgan JP. Cardiotoxicity of anthracycline-like chemotherapy agents. In: www.UpToDate, Savarese DFM, editors. Waltham: UpToDate. Accessed on 8 Sept 2014.
  124. 124.
    Perez EA, Morgan JP. Cardiotoxicity of trastuzumab and other HER2-targeted agents. In: www.UpToDate, Savarese DFM, editors. Waltham: UpToDate. Accessed on 15 Sept 2014.
  125. 125.
    Marks LB, Constine LS, Jacob Adams M. Cardiotoxicity of radiation therapy for malignancy. In: www.UpToDate, Ross ME, editors. Waltham: UpToDate. Accessed on 1 Sept 2014.
  126. 126.
    Romond EH, Jeong JH, Rastogi P, Swain SM, Geyer CE Jr, Ewer MS, et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 2012;30:3792–9.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Altena R, Perik PJ, van Veldhuisen DJ, de Vries EG, Gietema JA. Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol. 2009;10:391–9.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13:699–709.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Ewer MS, Lenihan DJ. Left ventricular ejection fraction and cardiotoxicity: is our ear really to the ground? J Clin Oncol. 2008;26:1201–3.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61:77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Lang RM, Mor-Avi V, Dent JM, Kramer CM. Three-dimensional echocardiography: is it ready for everyday clinical use? JACC Cardiovasc Imaging. 2009;2:114–7.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Lorenzini C, Corsi C, Aquilina M. Early detection of cardiotoxicity in chemotherapy-treated patients from real-time 3D echocardiography. Zaragoza: Computing in Cardiology Conference (CinC); 2013. p. 249–52.Google Scholar
  133. 133.
    Jurcut R, Wildiers H, Ganame J, D’hooge J, De Backer J, Denys H, et al. Strain rate imaging detects early cardiac effects of pegylated liposomal doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr. 2008;21:1283–9.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Hare JL, Brown JK, Leano R, Jenkins C, Woodward N, Marwick TH. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am Heart J. 2009;158:294–301.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57:2263–70.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Erven K, Jurcut R, Weltens C, Giusca S, Ector J, Wildiers H, et al. Acute radiation effects on cardiac function detected by strain rate imaging in breast cancer patients. Int J Radiat Oncol Biol Phys. 2011;79:1444–51.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Kavousi M, Elias-Smale S, Rutten JH, Leening MJ, Vliegenthart R, Verwoert GC, et al. Evaluation of newer risk markers for coronary heart disease risk classification: a cohort study. Ann Intern Med. 2012;156:438–44.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Thavendiranathan P, Wintersperger BJ, Flamm SD, Marwick TH. Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging. 2013;6:1080–91.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109:2749–54.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–80.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28:3910–6.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5:596–603.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Kutteh LA, Hobday T, Jaffe A. A correlative study of cardiac biomarkers and left ventricular ejection fraction (LVEF) from N9831, a phase III randomized trial of chemotherapy and trastuzumab as adjuvant therapy for HER2-positive breast cancer. J Clin Oncol. 2007;25(18S):579.Google Scholar
  144. 144.
    Raderer M, Kornek G, Weinländer G, Kastner J. Serum troponin T levels in adults undergoing anthracycline therapy. J Natl Cancer Inst. 1997;89(2):171.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Lenihan DJ, Massey MR, Baysinger KB. Superior detection of cardiotoxicity during chemotherapy using biomarkers. J Card Fail. 2007;13:S151.CrossRefGoogle Scholar
  146. 146.
    Romano S, Fratini S, Ricevuto E, Procaccini V, Stifano G, Mancini M, et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011;105:1663–8.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Skovgaard D, Hasbak P, Kjaer A. BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography. PLoS One. 2014;9:e96736.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Dodos F, Halbsguth T, Erdmann E, Hoppe UC. Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clin Res Cardiol. 2008;97:318–26.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Knobloch K, Tepe J, Lichtinghagen R, Luck HJ, Vogt PM. Monitoring of cardiotoxicity during immunotherapy with Herceptin using simultaneous continuous wave Doppler depending on N-terminal pro-brain natriuretic peptide. Clin Med. 2007;7:88–9.CrossRefGoogle Scholar
  150. 150.
    Knobloch K, Tepe J, Rossner D, et al. Combined NT-pro-BNP and CW-Doppler ultrasound cardiac output monitoring (USCOM) in epirubicin and liposomal doxorubicin therapy. Int J Cardiol. 2008;128:316–25.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Damrot J, Nubel T, Epe B, Roos WP, Kaina B, Fritz G. Lovastatin protects human endothelial cells from the genotoxic and cytotoxic effects of the anticancer drugs doxorubicin and etoposide. Br J Pharmacol. 2006;149:988–97.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Ran XZ, Ran X, Zong ZW, Liu DQ, Xiang GM, Su YP, et al. Protective effect of atorvastatin on radiation-induced vascular endothelial cell injury in vitro. J Radiat Res. 2010;51:527–33.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60:2384–90.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58:988–9.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Asanuma H, Minamino T, Sanada S, Takashima S, Ogita H, Ogai A, et al. Beta-adrenoceptor blocker carvedilol provides cardioprotection via an adenosine-dependent mechanism in ischemic canine hearts. Circulation. 2004;109:2773–9.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD, et al. Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci U S A. 2008;105:14555–60.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167:2306–10.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.CrossRefGoogle Scholar
  159. 159.
    Bosch X, Rovira M, Sitges M, Domènech A, Ortiz-Pérez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (prevention of left ventricular dysfunction with enalapril and carvedilol in patients submitted to intensive chemotherapy for the treatment of malignant hemopathies). J Am Coll Cardiol. 2013;61:2355–62.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23:7820–6.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Oliva S, Cioffi G, Frattini S, Simoncini EL, Faggiano P, Boccardi L. Italian Cardio-Oncological Network, et al. Administration of angiotensin-converting enzyme inhibitors and β-blockers during adjuvant trastuzumab chemotherapy for nonmetastatic breast cancer: marker of risk or cardioprotection in the real world? Oncologist. 2012;17:917–24.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Tokudome T, Mizushige K, Noma T, Manabe K, Murakami K, Tsuji T, et al. Prevention of doxorubicin (adriamycin)-induced cardiomyopathy by simultaneous administration of angiotensin-converting enzyme inhibitor assessed by acoustic densitometry. J Cardiovasc Pharmacol. 2000;36:361–8.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Abd El-Aziz MA, Othman AI, Amer M, El-Missiry MA. Potential protective role of angiotensin-converting enzyme inhibitors captopril and enalapril against adriamycin-induced acute cardiac and hepatic toxicity in rats. J Appl Toxicol. 2001;21:469–73.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Lemmens K, Segers VF, Demolder M, De Keulenaer GW. Role of neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. J Biol Chem. 2006;281:19469–77.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104:2492–8.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Dessì M, Madeddu C, Piras A, Cadeddu C, Deidda M, Massa E, et al. Long-term, up to 18 months, protective effects of the angiotensin II receptor blocker telmisartan on Epirubicin-induced inflammation and oxidative stress assessed by serial strain rate. Springerplus. 2013;2:198.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.CrossRefGoogle Scholar
  168. 168.
    Tofield A. ACE inhibitor reduces radiation injury to myocardium. Eur Heart J. 2013;34:2023–4.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation. 2011;124:642–50.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Haykowsky MJ, Mackey JR, Thompson RB, Jones LW, Paterson DI. Adjuvant trastuzumab induces ventricular remodeling despite aerobic exercise training. Clin Cancer Res. 2009;15:4963–7.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–90.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.CrossRefGoogle Scholar
  173. 173.
    Tocchetti CG, Ragone G, Coppola C, Rea D, Piscopo G, Scala S, et al. Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur J Heart Fail. 2012;14:130–7.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Suter TM, Procter M, van Veldhuisen DJ, Muscholl M, Bergh J, Carlomagno C, et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol. 2007;25:3859–65.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Mackey JR, Clemons M, Coté MA, Delgado D, Dent S, Paterson A, et al. Cardiac management during adjuvant trastuzumab therapy: recommendations of the Canadian Trastuzumab Working Group. Curr Oncol. 2008;15:24–35.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Jones LW, Haykowsky M, Peddle CJ, Joy AA, Pituskin EN, Tkachuk LM, et al. Cardiovascular risk profile of patients with HER2/neu-positive breast cancer treated with anthracycline-taxane-containing adjuvant chemotherapy and/or trastuzumab. Cancer Epidemiol Biomarkers Prev. 2007;16:1026–231.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Jones LW, Haykowsky M, Pituskin EN, Jendzjowsky NG, Tomczak CR, Haennel RG, et al. Cardiovascular reserve and risk profile of postmenopausal women after chemoendocrine therapy for hormone receptor–positive operable breast cancer. Oncologist. 2007;12:1156–64.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Carlson RW, Hudis CA, Pritchard KI. Adjuvant endocrine therapy in hormone receptor-positive postmenopausal breast cancer: evolution of NCCN, ASCO, and St Gallen recommendations. J Natl Compr Cancer Netw. 2006;4:971–9.CrossRefGoogle Scholar
  179. 179.
    McCrohon JA, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108:54–9.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Demark-Wahnefried W, Rimer BK, Winer EP. Weight gain in women diagnosed with breast cancer. J Am Diet Assoc. 1997;97:519–26, 29; quiz 27–8PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Goodwin P, Esplen MJ, Butler K, Winocur J, Pritchard K, Brazel S, et al. Multidisciplinary weight management in locoregional breast cancer: results of a phase II study. Breast Cancer Res Treat. 1998;48:53–64.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Holmberg L, Lund E, Bergstrom R, Adami HO, Meirik O. Oral contraceptives and prognosis in breast cancer: effects of duration, latency, recency, age at first use and relation to parity and body mass index in young women with breast cancer. Eur J Cancer. 1994;30A:351–4.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Lethaby AE, Mason BH, Harvey VJ, Holdaway IM. Survival of women with node negative breast cancer in the Auckland region. N Z Med J. 1996;109:330–3.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Goodwin PJ, Ennis M, Pritchard KI, McCready D, Koo J, Sidlofsky S, et al. Adjuvant treatment and onset of menopause predict weight gain after breast cancer diagnosis. J Clin Oncol. 1999;17:120–9.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Rock CL, Flatt SW, Newman V, Caan BJ, Haan MN, Stefanick ML, et al. Factors associated with weight gain in women after diagnosis of breast cancer. Women’s Healthy Eating and Living Study Group. J Am Diet Assoc. 1999;99:1212–21.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Chlebowski RT, Weiner JM, Reynolds R, Luce J, Bulcavage L, Bateman JR. Long-term survival following relapse after 5-FU but not CMF adjuvant breast cancer therapy. Breast Cancer Res Treat. 1986;7:23–30.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Camoriano JK, Loprinzi CL, Ingle JN, Therneau TM, Krook JE, Veeder MH. Weight change in women treated with adjuvant therapy or observed following mastectomy for node-positive breast cancer. J Clin Oncol. 1990;8:1327–34.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Bonomi P, Bunting N, Fishman D, et al. Weight gain during adjuvant chemotherapy or hormone-chemotherapy for stage II breast cancer evaluated in relation to disease free survival. BCRT. 1985;4:339.(abstr)​.Google Scholar
  189. 189.
    Levine EG, Raczynski JM, Carpenter JT. Weight gain with breast cancer adjuvant treatment. Cancer. 1991;67:1954–9.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Heasman KZ, Sutherland HJ, Campbell JA, Elhakim T, Boyd NF. Weight gain during adjuvant chemotherapy for breast cancer. Breast Cancer Res Treat. 1985;5:195–200.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Goodwin PJ, Panzarella T, Boyd NF. Weight gain in women with localized breast cancer – a descriptive study. Breast Cancer Res Treat. 1988;11:59–66.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Costa LJ, Varella PC, del Giglio A. Weight changes during chemotherapy for breast cancer. Sao Paulo Med J. 2002;120:113–7.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Willett WC, Manson JE, Stampfer MJ, Colditz GA, Rosner B, Speizer FE, et al. Weight, weight change, and coronary heart disease in women. Risk within the ‘normal’ weight range. JAMA. 1995;273:461–5.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341:1097–105.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635–43.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Khemasuwan D, Divietro ML, Tangdhanakanond K, Pomerantz SC, Eiger G, et al. Statins decrease the occurrence of venous thromboembolism in patients with cancer. Am J Med. 2010;123:60–5.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Mosca L, Banka CL, Benjamin EJ, Berra K, Bushnell C, Dolor RJ, et al. Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. J Am Coll Cardiol. 2007;49:1230–50.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, et al. Exercise capacity and the risk of death in women: the St James Women Take Heart Project. Circulation. 2003;108:1554–9.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Manson JE, Greenland P, LaCroix AZ, Stefanick ML, Mouton CP, Oberman A, et al. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med. 2002;347:716–25.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA, et al. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293:2479–86.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Heart and Vascular InstituteUniversity of PittsburghPittsburghUSA

Personalised recommendations