Advertisement

Evaluation of Patients for Metastases Prior to Primary Therapy

  • Deniz Eren Böler
  • Neslihan Cabioğlu
Chapter

Abstract

For axillary staging, preoperative ultrasound (US) and needle biopsy have emerged as effective methods for triaging women with breast cancer directly to axillary surgery for SLNB or ALND or to neoadjuvant chemotherapy in those with axillary node-positive disease. However, there is no perfect modality to identify metastatic disease in breast cancer; every diagnostic test has its own advantages and limitations. The available evidence suggests routine evaluation for clinical stage III and possibly stage II breast cancer using imaging techniques including FDG PET/CT. The workup of abnormal findings in breast cancer patients is by patient signs and symptoms including history and physical examination, laboratory tests, imaging, biopsy of suspicious finding in imaging studies, and monitoring serum markers.

Keywords

Staging of breast cancer Axillary staging PET/CT 

References

  1. 1.
    Carter CL, Allen C, Henson DE. Relation of tumor size, lymph node status and survival in 24,740 breast cancer cases. Cancer. 1989;63:181–7.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst. 2005;97:188–94.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Fisher B, Bauer M, Wickerham DL, Redmond CK, Fisher ER, Cruz AB, et al. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. A NSABP update. Cancer. 1983;52:1551–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Clayton F, Hopkins CL. Pathologic correlates of prognosis is lymph node-positive breast carcinomas. Cancer. 1993;71:1780–90.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wilking N, Rutqvist LE, Carstensen J, Mattsson A, Skoog L. Prognostic significance of axillary nodal status in primary breast cancer in relation to the number of resected nodes. Stocholm Breast Cancer Study Group. Acta Oncol. 1992;31:29–35.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Pamilo M, Soiva M, Lavast EM. Real-time ultrasound, axillary mammography, and clinical examination in the detection of axillary lymph node metastases in breast cancer patients. J Ultrasound Med. 1989;8:115–20.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kvistad KA, Rydland J, Smethurst HB, Lundgren S, Fjosne HE, Haraldseth O. Axillary lymph node metastases in breast cancer: preoperative detection with dynamic contrast-enhanced MRI. Eur Radiol. 2000;10:1464–71.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Valente SA, Levine GM, Silverstein MJ, Rayhanabad JA, Weng-Grumley JG, Ji L, Holmes DR, Sposto R, Sener S. Accuracy of predicting axillary lymph node positivity by physical examination, mammography, ultrasonography and magnetic resonance imaging. Ann Surg Oncol. 2012;19:1825–30.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sacre RA. Clinical evaluation of axillar lymph nodes compared to surgical and pathological findings. Eur J Surg Oncol. 1986;12:169–73.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kim T, Giuliano AE, Lyman GH. Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer. 2006;106:4–16.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Specht MC, Fey JV, Borgen PI, Cody HS 3rd. Is the clinically positive axilla in breast cancer really a contraindication to sentinel lymph node biopsy? J Am Coll Surg. 2005;200:10–4.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lanng C, Hoffmann J, Galatius H, Engel U. Assessment of clinical palpation of the axilla as a criterion for performing the sentinel node procedure in breast cancer. Eur J Surg Oncol. 2007;33:281–4.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Shetty MK, Carpenter WS. Sonographic evaluation of isolated abnormal axillary lymph nodes identified on mammograms. J Ultrasound Med. 2004;23:63–71.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Boughey JC, Moriarty JP, Degnim AC, Gregg MS, Egginton JS, Long KH. Cost modeling of preoperative axillary ultrasound and fine-needle aspiration to guide surgery for invasive breast cancer. Ann Surg Oncol. 2010;17:953–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Alvarez S, Anorbe E, Alcorta P, Lopez F, Alonso I, Cortes J. Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review. Am J Roentgenol. 2006;186:1342–8.CrossRefGoogle Scholar
  16. 16.
    Bedi DG, Krishnamurthy R, Krishnamurthy S, Edeikan BS, Le-Petross H, Fornage BD, et al. Cortical morphologic features of axillary lymph nodes as a predictor of metastasis in breast cancer: in vitro sonographic study. Am J Roentgenol. 2008;191:646–52.CrossRefGoogle Scholar
  17. 17.
    Britton PD, Goud A, Godward S, Barter S, Freeman A, O’Donovan M, et al. Use of ultrasound-guided axillary node core biopsy in staging of early breast cancer. Eur Radiol. 2009;19:561–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Elmore LC, Appleton CM, Zhou G, Margenthaler JA. Axillary ultrasound in patients with clinically node-negative breast cancer: which features are predictive of disease? J Surg Res. 2013;184:234–40.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Moore A, Hester M, Nam MW, Brill YM, McGrath P, Wright H, et al. Distinct lymph nodal sonographic characteristics in breast cancer patients at high risk for axillary metastases correlate with the final axillary stage. Br J Radiol. 2008;81:630–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Nori J, Vanzi E, Bazzocchi M, Bufalini FN, Distante V, Branconi F, et al. Role of axillary ultrasound in the selection of breast cancer patients for sentinel node biopsy. Am J Surg. 2007;193:16–20.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lee MC, Eatrides J, Chau A, Han G, Kiluk JV, Kahkpour N, et al. Consequences of axillary ultrasound in patients with T2 or greater invasive breast cancers. Ann Surg Oncol. 2011;18:72–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Park SH, Kim MJ, Park BW, Moon HJ, Kwak JY, Kim EK. Impact of preoperative ultrasonography and fine-needle aspiration of axillary lymph nodes on surgical management of primary breast cancer. Ann Surg Oncol. 2011;18:738–44.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Houssami N, Ciatto S, Turner RM, Cody HS III, Macaskill P. Preoperative ultrasound-guided needle biopsy of axillary nodes in invasive breast cancer: meta-analysis of its accuracy and utility in staging the axilla. Ann Surg. 2011;254:243–51.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Houssami N, Diepstraten SCE, Cody HS III, Turner RM, Sever AR. Clinical utility of ultrasound-needle biopsy for preoperative staging of the axilla in invasive breast cancer. Anticancer Res. 2014;34:1187–98.Google Scholar
  25. 25.
    Diepstraten SCE, Sever AR, Buckens CFM, Veldhuis WB, van Dalen T, van den Bosch MAAJ, et al. Value of preoperative ultrasound-guided axillary lymph node biopsy for preventing completion axillary lymph node dissection in breast cancer: a systematic review and meta-analysis. Ann Surg Oncol. 2014;21:51–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Sever AR, Mills P, Jones SE, Cox K, Weeks J, Fish D, et al. Preoperative sentinel node identification with ultrasound using microbubbles in patients with breast cancer. Am J Roentgenol. 2011;196:251–6.CrossRefGoogle Scholar
  27. 27.
    Taylor K, O’Keeffe S, Britton PD, Wallis MG, Treece GM, Housden J, et al. Ultrasound elastography as an adjuvant to conventional ultrasound in the preoperative assessment of axillary lymph nodes in suspected breast cancer: a pilot study. Clin Radiol. 2011;66:1064–71.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Choi JJ, Kang BJ, Kim SH, Lee JH, Jeong SH, Yim HW, et al. Role of sonographic elastography in the differential diagnosis of axillary lymph nodes in breast cancer. J Ultrasound Med. 2011;30:429–36.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    García Fernández A, Fraile M, Giménez N, Reñe A, Torras M, Canales L, et al. Use of axillary ultrasound, ultrasound-fine needle aspiration biopsy and magnetic resonance imaging in the preoperative triage of breast cancer patients considered for sentinel node biopsy. Ultrasound Med Biol. 2011;37:16–22.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yoshimura G, Sakurai T, Oura S, Suzuma T, Tamaki T, Umemura T, et al. Evaluation of axillary lymph node status in breast cancer with MRI. Breast Cancer. 1999;6:249–58.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Luciani A, Dao TH, Lapeyre M, Schwarzinger M, Debaecque C, Lantieri L, et al. Simultaneous bilateral breast and high-resolution axillary MRI of patients with breast cancer: preliminary results. AJR Am J Roentgenol. 2004;182:1059–67.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rautianen S, Masarwah A, Sudah M, Sutela A, Pelkonen O, Joukaninen S, et al. Axillary lymph node biopsy in newly diagnosed invasive breast cancer: comparative accuracy of fine-needle aspiration biopsy versus core-needle biopsy. Radiology. 2013;269:54–60.CrossRefGoogle Scholar
  33. 33.
    Mullen R, Purdie CA, Jordan LB, McLean D, Whelehan P, Vinnicombe S, et al. Can additional histopathological examination of ultrasound-guided axillary lymph node core biopsies improve preoperative diagnosis of primary breast cancer nodal metastasis? Clin Radiol. 2013;68:704–7.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nathanson SD, Burke M, Slater R, Kapke A. Preoperative identification of the sentinel lymph node in breast cancer. Ann Surg Oncol. 2007;14:3102–210.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW, Blumencranz PW, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305:569–75.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Giuliano AE, McCall L, Beitsch P, Whitworth PW, Blumencranz P, Leitch AM, et al. Locoregional recurrence after sentinel lymph node dissection with or without axillary dissection in patients with sentinel lymph node metastases: the American College of Surgeons Oncology Group Z0011 randomized trial. Ann Surg. 2010;252:426–32. Discussion 432–43.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cox K, Sever A, Jones S, Weeks J, Mills P, Devalina H, et al. Validation of a technique suing microbubbles and contrast enhanced ultrasound (CEUS) to biopsy sentinel lymph nodes (SLN) in pre-operative breast cancer patients with a normal grey-scale axillary ultrasound. Eur J Surg Oncol. 2013;39:760–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Neal CH, Daly CP, Nees AV, Helvie MA. Can preoperative axillary US help exclude N2 and N3 metastatic breast cancer? Radiology. 2010;257:335–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Reyna C, Lee MC, Frelick A, Khakpour N, Laronga C, Kiluk JV. Axillary burden of disease following false-negative preoperative axillary evaluation. Am J Surg. 2014;208:577–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Ibrahim-Zada I, Grant CS, Glazebrook KN, Boughey JC. Preoperative axillary ultrasound in breast cancer: safely avoiding frozen section of sentinel lymph nodes in breast-conserving surgery. J Am Coll Surg. 2013;217:7–15; discussion 15–6.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hyun SJ, Kim EK, Moon HJ, Yoon JH, Kim MJ. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): can breast MRI exclude advanced nodal disease? Eur Radiol. 2016;26:3865–73.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Galimberti V, Cole BF, Zurrida S, Viale G, Luini A, Veronesi P, et al. Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): a phase 3 randomised controlled trial. Lancet Oncol. 2013;14:297–305.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Donker M, van Tienhoven G, Straver ME, Meijnen P, van de Velde CJ, Mansel RE, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014;15:1303–10.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gentilini O, Veronesi U. Abandoning sentinel lymph node biopsy in early breast cancer? A new trial in progress at the European Institute of Oncology of Milan (SOUND: Sentinel node vs Observation after axillary UltraSouND). Breast. 2012;21:678–81.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Boughey JC, Suman VJ, Mittendorf EA, Ahrendt GM, Wilke LG, Taback B, et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOGZ1071 (Alliance) clinical trial. JAMA. 2013;310:1455–61.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kuehn T, Bauerfeind I, Fehm T, Fleige B, Hausschild M, Helms G, et al. Sentinel lymph node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol. 2013;14:609–1.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Caudle AS, Yang WT, Krishnamurthy S, Mittendorf EA, Black DM, Gilcrease MZ, et al. Improved axillary evaluation following neoadjuvant therapy for patients with node- positive breast cancer using selective evaluation of clipped nodes: implementation of targeted axillary dissection. J Clin Oncol. 2016;34:1072–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cabioglu N, Karanlik H, Kangal D, Özkurt E, Öner G, Sezen F, et al. Improved false-negative rates with intraoperative identification of clipped nodes in patients undergoing sentinel lymph node biopsy after neoadjuvant chemotherapy. Ann Surg Oncol. 2018.  https://doi.org/10.1245/s10434-018-6575-6. [Epub ahead of print].PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Choi YJ, Shin YD, Kang YH, Lee MS, Lee MK, Cho BS, et al. The effects of preoperative 18F-FDG PET/CT in breast cancer patients in comparison to the conventional imaging study. J Breast Cancer. 2012;15:441–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Garami Z, Hascsi Z, Varga J, Dinya T, Tanyi M, Garai I, et al. The value of 18-FDG PET/CT in early stage breast cancer compared to traditional diagnostic modalities with an emphasis on changes in disease stage designation and treatment plan. Eur J Surg Oncol. 2012;38:31–7.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Danforth DN Jr, Aloj L, Carrasquillo JA, Bacharach SL, Chow C, Zujewski J, et al. The role of 18F-FDG-PET in the local/regional evaluation of women with breast cancer. Breast Cancer Res Treat. 2002;75:135–46.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Veronesi U, De Cicco C, Galimberti VE, Fernandez JR, Rotmensz N, Viale G, et al. A comparative study on the value of FDG-PET and senti- nel node biopsy to identify occult axillary metastases. Ann Oncol. 2007;18:473–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Robertson IJ, Hand F, Kell MR. FDG-PET/CT in the staging of local/regional metastases in breast cancer. Breast. 2011;20:491–4.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Fujii T, Yajima R, Tatsuki H, Oosone K, Kuwano H. Implication of 18F-fluorodeoxyglucose uptake of affected axillary lymph nodes in cases with breast cancer. Anticancer Res. 2016;36:393–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Cooper KL, Harnan S, Meng Y, Ward SE, Fitzgerald P, Papaioannou D, et al. Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2011;37:187–98.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Zornoza G, Garcia-Velloso MJ, Sola J, Regueira FM, Pina L, Beorlegni C. 18F-FDG PET complemented with sentinel lymph node biopsy in the detection of axillary involvement in breast cancer. Eur J Surg Oncol. 2004;30:15–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Heusner TA, Freudenberg LS, Kuehl H, Hauth EA, Veit-Haibach P, Forsting M, et al. Whole-body PET/CT-mammography for staging breast cancer: initial results. Br J Radiol. 2008;81:743–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Peng NJ, Chou CP, Pan HB, Chang TH, Hu C, Chiu YL, et al. FDG-PET/CT detection of very early breast cancer in women with breast microcalcification lesions found in mammography screening. J Med Imaging Radiat Oncol. 2015;59:445–52.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Krammer J, Schnitzer A, Kaiser CG, Buesing KA, Sperk E, Brade J, et al. (18) F-FDG PET/CT for initial staging in breast cancer patients – Is there a relevant impact on treatment planning compared to conventional staging modalities? Eur Radiol. 2015;25:2460–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Van Nijnatten TJA, Goorts B, Vöö S, de Boer M, Kooreman LFS, Heuts EM, et al. Added value of dedicated axillary hybrid 18F-FDG PET/MRI for improved axillary nodal staging in clinically node-positive breast cancer patients: a feasibility study. Eur J Nucl Med Mol Imaging. 2018;45:179–86.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Mahner S, Schirrmacher S, Brenner W, Jenicke L, Habermann CR, Avril N, et al. Comparison between positron emission tomography using 2-[fluorine-18] fluoro-2-deoksy-D-glucose, conventional imaging and computed tomography for staging of breast cancer. Ann Oncol. 2008;19:1249–54.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ravaioli A, Pasini G, Polselli A, Papi M, Tassinari D, Arcangeli V, et al. Staging of breast cancer: new recommended standard procedure. Breast Cancer Res Treat. 2002;72:53–60.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Patanaphan V, Salazar OM, Risco R. Breast cancer: metastatic patterns and their prognosis. South Med J. 1988;81:1109–12.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Puglisi F, Follador A, Minisini AM, Cardellino GG, Russo S, Andreetta C, et al. Baseline staging tests after a new diagnosis of breast cancer: further evidence of their limited indications. Ann Oncol. 2005;16:263–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Myers RE, Johnston M, Pritchard K, Levine M, Oliver T, Breast Cancer Disease Site Group of the Cancer Care Ontario Practice Guidelines Initiative. Baseline staging tests in primary breast cancer: a practice guideline. Can Med Assoc J. 2001;164:1439–44.Google Scholar
  66. 66.
    Gerber B, Seitz E, Muller H, Krause A, Reimer T, Kundt G, et al. Perioperative metastatic disease is not indicated in patients with primary breast cancer and no clinical signs of tumor spread. Breast Cancer Res Treat. 2003;82:29–37.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    National comprehensive cancer network clinical practice guidelines in oncology, breast cancer. Version 1.2018. http://www.nccn.org/. Published 03.20.2018.
  68. 68.
    Kasem AR, Desai A, Daniell S, Sinha P. Bone scan and liver ultrasound scan in the preoperative staging for primary breast cancer. Breast J. 2006;12:544–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Tennant S, Evans A, Macmillan D, Lee A, Cornford E, James J, et al. CT staging of loco-regional breast cancer recurrence: a worthwhile practice? Clin Radiol. 2009;64:885–90.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Chen A, Carlson GA, Coughlin BF, Reed WP Jr, Garb JL, Frank JL. Routine chest roentgenography is unnecessary in the work-up of stage I and II breast cancer. J Clin Oncol. 2000;18:3503–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kim H, Han W, Moon HG, Min J, Ahn SK, Kim TY, et al. The value of preoperative staging chest computed tomography to detect asymptomatic lung and liver metastasis in patients with primary breast carcinoma. Breast Cancer Res Treat. 2011;126:637–41.CrossRefGoogle Scholar
  72. 72.
    Kumar R, Zhuang H, Schnall M, Conant E, Damia S, Weinstein S, et al. FDG PET positive lymph nodes are highly predictive of metastasis in breast cancer. Nucl Med Commun. 2006;27:231–6.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Yang SN, Liang JA, Lin FJ, Kao CH, Lin CC, Lee CC. Comparing whole body (18) F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol. 2002;128:325–8.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ueda S, Saeki T, Shigekawa T, Omata J, Moriya T, Yamamoto J, et al. 18F-fluorodeoxyglucose positron emission tomography optimizes neoadjuvant chemotherapy for primary breast cancer to achieve pathological complete response. Int J Clin Oncol. 2012;17:276–82.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Fuster D, Duch J, Paredes P, Velasco M, Muñoz M, Santamaria G, et al. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol. 2008;26:4746–51.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Eubank WB, Mankoff DA, Takasugi J, Vesselle H, Eary JF, Shanley TJ, et al. 18 fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer. J Clin Oncol. 2001;19:3516–23.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Bernsdorf M, Berthelsen AK, Wielenga VT, Kroman N, Teilum D, Binderup T, et al. Preoperative PET/CT in early-stage breast cancer. Ann Oncol. 2012;23:2277–82.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Jeong YJ, Kang DY, Yoon HJ, Son HJ. Additional value of F-18 FDG PET/CT for initial staging in breast cancer with clinically negative axillary nodes. Breast Cancer Res Treat. 2014;145:137–42.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, et al. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun. 2001;22:875–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Iagaru A, Young P, Mitra E, Dick DW, Herfkens R, Gambhir SS. Pilot prospective evaluation of 99mTc-MDP scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and whole-body MRI for detection of skeletal metastases. Clin Nucl Med. 2013;38(7):e290–6.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kumar R, Halanaik D, Malhotra A. Clinical applications of positron emission tomography-computed tomography in oncology. Indian J Cancer. 2010;47:100–19.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Alkhawaldeh K, Bural G, Kumar R, Alavi A. Impact of dual-time-point (18)F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging. 2008;35:246–52.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Crivello ML, Ruth K, Sigurdson ER, Egleston BR, Evers K, Wong YN, Boraas M, Bleicher RJ. Advanced imaging modalities in early stage breast cancer: preoperative use in the United States Medicare population. Ann Surg Oncol. 2013;20:102–10.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. Panel members. Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011;33:1736–47.CrossRefGoogle Scholar
  85. 85.
    Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;33:5367–74.CrossRefGoogle Scholar
  86. 86.
    Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;33:736–50.CrossRefGoogle Scholar
  87. 87.
    Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;33:3271–7.CrossRefGoogle Scholar
  88. 88.
    Lindstrom LS, Karlsson E, Wilking UM, Johansson U, Hartman J, Lidbrink EK, et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol. 2012;33:2601–8.CrossRefGoogle Scholar
  89. 89.
    Broom RJ, Tang PA, Simmons C, Bordeleau L, Mulligan AM, O’Malley FP, et al. Changes in estrogen receptor, progesterone receptor and Her-2/neu status with time: discordance rates between primary and metastatic breast cancer. Anticancer Res. 2009;33:1557–62.Google Scholar
  90. 90.
    Chen X, Sun L, Cong Y, Zhang T, Lin Q, Meng Q, et al. Baseline staging tests based on molecular subtype is necessary for newly diagnosed breast cancer. J Exp Clin Cancer Res. 2014;33:28–42.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Evangelista L, Guarneri V, Conte PF. 8F-fluoroestradiol positron emission tomography in breast cancer patients: systematic review of the literature & meta-analysis. Curr Radiopharm. 2016;9:244–57.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Salem K, Kumar M, Kloepping KC, Michel CJ, Yan Y, Fowler AM. Determination of binding affinity of molecular imaging agents for steroid hormone receptors in breast cancer. Am J Nucl Med Mol Imaging. 2018;8:119–26.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57:27–33.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Gilardi L, Fumagalli L, Paganelli G. Preoperative PET/CT in early-stage breast cancer: is the TNM classification enough? Ann Oncol. 2013;24:852.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging. 2011;38:987–91.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Goorts B, Vöö S, van Nijnatten TJA, Kooreman LFS, de Boer M, Keymeulen KBMI, et al. Hybrid 18F-FDG PET/MRI might improve locoregional staging of breast cancer patients prior to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2017;44:1796–805.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Deniz Eren Böler
    • 1
  • Neslihan Cabioğlu
    • 2
  1. 1.Department of General Surgery, Yeniyüzyıl University Gaziosmanpaşa HospitalIstanbulTurkey
  2. 2.Department of Surgery, Istanbul University Istanbul Faculty of MedicineIstanbulTurkey

Personalised recommendations