Combined Over-the-Horizon Communication Systems

  • M. IlchenkoEmail author
  • S. KravchukEmail author
  • M. KaydenkoEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 560)


The chapter presents the scientific and technical principles of construction of new hybrid combined over-the-horizon communication systems with the use of reference small-sized stations of troposcatter communication, relaying intellectual aeroplatforms and artificial formations. These principles are based on the use of new technologies and software-defined and cognitive radio, cooperative relaying, machine-to-machine, effective interaction system, hardware and application protocol levels.


Ttroposcatter communication Over-the-horizon communication Scintillation Ray tracing Relay aeroplatforms Artificial formations 


  1. 1.
    Freeman, R.L.: Radio System Design for Telecommunications, 3rd edn, p. 880. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  2. 2.
    Roda, G.: Troposcatter Radio Links. Artech House Publishers, Boston (1988)Google Scholar
  3. 3.
    Ilchenko, M.Y., Kravchuk, S.O.: Telecommunication Systems, p. 730. Naukova dumka, Kiev (2017)Google Scholar
  4. 4.
    Li, C., Chen, X., Liu, X.: Cognitive tropospheric scatter communication. IEEE Trans. Veh. Technol. 67(2), 1482–1491 (2018)CrossRefGoogle Scholar
  5. 5.
    Nemit, J.T.: Over the horizon communication system. US5017923A Patent Number: 5,017,923, 21 May 1991Google Scholar
  6. 6.
    Mu, Y., Blázquez García, R., Aguareles Palomar, J., Sun, X., García Tejero, A., Fernández González, J.M., Burgos García, M., Sierra Castañer, M.: Over-the-horizon communications system for UAVs based on intelligent antennas. In: XXXI Simposium Nacional de la Unión Científica Internacional de Radio (URSI 2016) Madrid, Spain, pp. 1–4 (2016).
  7. 7.
    Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016)CrossRefGoogle Scholar
  8. 8.
    Alsamhi, S.H., Rajput, N.S.: An intelligent HAP for broadband wireless communications: developments, QoS and applications. Int. J. Electron. Electr. Eng. 3(2), 134–143 (2015)Google Scholar
  9. 9.
    Flattie, A.G.: Effect of high altitude aeronautical platforms with cognitive relay for radar performance. Int. J. Sig. Process. Syst. 3(2), 159–165 (2015)Google Scholar
  10. 10.
    Motlagh, N.H., Taleb, T., Arouk, O.: Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J. 3(6), 899–922 (2016)CrossRefGoogle Scholar
  11. 11.
    Mehmood, Y., Gurg, C., Muehleisen, M., Timm-Giel, A.: Mobile M2M communication architectures, upcoming challenges, applications, and future Directions. EURASIP J. Wirel. Commun. Netw. (1), 1–37 (2015).
  12. 12.
    Afanasieva, L., Minochkin, D., Kravchuk, S.: Providing telecommunication services to antarctic stations. In: Proceedings of the 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Odessa, Ukraine, 11–15 September 2017, pp. 1–4. IEEE Conference Publications (2017). (IEEE Xplore Digital Library)
  13. 13.
    Zgurovsky, M., Ilchenko, M., Kravchuk, S., Kotovskyi, V., Narytnik, T., Cybulskyi, L.: Prospects of using of aerial stratospheric telecommunication systems. In: Proceedings of the 2016 IEEE International Scientific Conference “RadioElectronics & InfoCommunications” (UkrMiCo 2016), Kyiv, Ukraine, 11–16 September 2016. IEEE Conference Publications (2016). (IEEE Xplore Digital Library)
  14. 14.
    Kravchuk, S., Minochkin, D., Omiotek, Z., Bainazarov, U., Weryńska-Bieniasz, R., Iskakova, A.: Cloud-based mobility management in heterogeneous wireless networks. In: Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments, SPIE, Wilga, Poland, 7 August 2017, vol. 10445, p. 104451W (2017).
  15. 15.
    Almási, B.: Multipath communication – a new basis for the future internet cognitive infocommunication. In: 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 2–5 December 2013, pp. 201–204 (2013).
  16. 16.
    Garg, A., Das, S.S.: Design of troposcatter broadband link based on SCFDE. In: 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1–6 (2017).
  17. 17.
    Li, C., Chen, X., Liu, J., Liu, Z.: One-way time transfer for large area through tropospheric scatter. In: 2017 17th IEEE International Conference on Communication Technology (ICCT), pp. 1–5 (2017).
  18. 18.
    Li, C., Chen, X., Xie, Z.: A closed-form expression of coherence bandwidth for troposcatter links. IEEE Commun. Lett. 22(3), 646–649 (2018). Scholar
  19. 19.
    Maokai, H., Xihong, C., Tao, S., Shaoqiang, D.: New generation troposcatter communication based on OFDM modulation. In: Ninth International Conference on Electronic Measurement & Instruments (ICEMI 2009), pp. 3:164–3:167 (2009)Google Scholar
  20. 20.
    Xie, Z., Chen, X., Liu, X., Zhao, Y.: MMSE-NP-RISIC-based channel equalization for MIMO-SC-FDE troposcatter communication systems. Math. Prob. Eng. 1–9 (2016). Hindawi Publishing Corporation, ID 5158406
  21. 21.
    Kravchuk, S., Kaidenko, M.: Features of creation of modem equipment for the new generation compact troposcatter stations. In: Proceedings of the International Scientific Conference “RadioElectronics & InfoCommunications” (UkrMiCo 2016), Kyiv, Ukraine, 11–16 September 2016, pp. 365–368. IEEE Conference Publications (2016). (IEEE Xplore Digital Library)
  22. 22.
    Kravchuk, S.O.: Principles for creating portable tropospheric radio relay stations. In: Proceedings of the 9th International Scientific Conference Modern Challenges in Telecommunications, Kyiv, Ukrane, 21–25 April 2015, pp. 254–256 (2015). (in Russian)Google Scholar
  23. 23.
    Kravchuk, S.O., Kaidenko, M.M.: Modem equipment for the new generation compact troposcatter stations. Inf. Telecommun. Sci. 7(1), 5–12 (2016)Google Scholar
  24. 24.
    Unkauf, F.: The next generation of troposcatter systems. Raytheon Technol. Today (3), 9–10 (2007)Google Scholar
  25. 25.
    Bastos, L., Wietgrefe, H.: Highly-deployable troposcatter systems in support of NATO expeditionary operations. In: IEEE Conference Proceedings on Military Communications Conference MILCOM, Baltimore, 7–10 November 2011Google Scholar
  26. 26.
    Li, L., Wu, Z.-S., Lin, L.-K., Zhang, R., Zhao, Z.-S.: Study on the prediction of troposcatter transmission loss. IEEE Trans. Antennas Propag. 64(3), 1071–1078 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yun, Z., Iskander, M.F.: Ray tracing for radio propagation modeling: principles and applications. IEEE Access 3, 1089–1100 (2015)CrossRefGoogle Scholar
  28. 28.
    Nafisi, V., Madzak, M., Böhm, J., Schuh, H., Ardalan, A.A.: Ray-traced tropospheric slant delays in VLBI analysis. Vermessung Geoinformation (2), 149–153 (2011)Google Scholar
  29. 29.
    Valtr, P., Pechac, P.: Tropospheric refraction modeling using ray-tracing and parabolic equation. Radioengineering 14(4), 98–104 (2005)Google Scholar
  30. 30.
    Zhao, X., Yang, P.: A simple two-dimensional ray-tracing visual tool in the complex tropospheric environment. Atmosphere 8(35), 1–10 (2017)Google Scholar
  31. 31.
    Dinc, E., Akan, O.B.: A ray-based channel modeling approach for MIMO troposcatter beyond-line-of-sight (b-LoS) communications. IEEE Trans. Commun. 63(5), 1690–1699 (2015)CrossRefGoogle Scholar
  32. 32.
    Dinc, E., Akan, O.B.: A nonuniform spatial rain attenuation model for troposcatter communication links. IEEE Wirel. Commun. Lett. 4(4), 441–444 (2015)CrossRefGoogle Scholar
  33. 33.
    Dinc, E., Akan, O.B.: Beyond-line-of-sight ducting channels: coherence bandwidth, coherence time and rain attenuation. IEEE Commun. Lett. 19(12), 2274–2277 (2015)CrossRefGoogle Scholar
  34. 34.
    Dinc, E., Akan, O.B.: Fading correlation analysis in MIMO-OFDM troposcatter communications: space, frequency, angle and space-frequency diversity. IEEE Trans. Commun. 63(2), 476–486 (2015)CrossRefGoogle Scholar
  35. 35.
    Barclay, L. (ed.): Propagation of Radiowaves, p. 470. The Institution of Engineering and Technology, London (2013)Google Scholar
  36. 36.
    Athanaileas, T.E., Athanasiadou, G.E., Tsoulos, G.V., Kaklamani, D.I.: Parallel radio-wave propagation modeling with image-based ray tracing techniques. Parallel Comput. 36, 679–695 (2010)CrossRefGoogle Scholar
  37. 37.
    Kaur, B.: MATLAB and K-wave based outdoor ray propagation predictor tool SNELLIX for surface wave modelling. Innov. Syst. Des. Eng. 6(11), 7–18 (2015)Google Scholar
  38. 38.
    Ilchenko, M., Kravchuk, S., Minochkin, D., Afanasieva, L.: Troposcatter communication link model based on ray-tracing. Inf. Telecommun. Sci. (2), 15–20 (2018).
  39. 39.
    Ilchenko, M.E., Kravchuk, S.A.: Information telecommunication broadband radio access systems. J. Autom. Inf. Sci. 38(4), 69–77 (2006). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations