Advertisement

Bridge Equivalent Circuits for Microwave Filters and Fano Resonance

  • M. IlchenkoEmail author
  • A. ZhivkovEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 560)

Abstract

The analytical dependences for analysis of microwave structures based on different types of resonators located in parallel communication channels are obtained. These dependencies are suitable for describing many known oscillatory processes. A comprehensive analysis of electrodynamic metamaterial cells is carried out on the basis of these equations. It was shown that obtained analytical expressions describe the characteristics of bridge 4-poles on lumped elements. Such 4-pole networks have an extremely high group delay time and complete signal rejection possibility. These properties characterize metamaterials and some processes described by the Fano resonance. By contrast 4-poles based on coupled resonators, bridge 4-pole are built on the basis of two independent oscillations in different branches. The purpose of this chapter is new models of bridge 4-poles with different Q-factors of resonators. These models simplify modeling of attenuation poles in microwave filters and processes described by Fano resonance.

Keywords

Bridge equivalent circuits Metamaterials Fano resonance 

References

  1. 1.
    Ilchenko, M.E., Zhivkov, A.P.: UHF devices based on several dielectric-cavity mode types. Radioelectron. Commun. Syst. 32(5), 56–59 (1989)Google Scholar
  2. 2.
    Ilchenko, M.E., Zhivkov, A.P., Orlov, A.T.: Filters based on resonators with modes similar in frequency as cells of metamaterials. Naukovi Visti NTUU “KPI” 104(1), 7–14 (2016). (in Russian)Google Scholar
  3. 3.
    Ilchenko, M.E., Zhivkov, A.P.: Microwave filters based on the structures with resonators in parallel channels as metamaterial cells. KPI Sci. News 6, 7–21 (2018)Google Scholar
  4. 4.
    Ilchenko, M.E., Zhivkov, A.P.: Properties of metamaterials in oscillation terminology. In: 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics, UkrMiCo 2016, Ukraine, 11–15 September, pp. 170–173 (2017)Google Scholar
  5. 5.
    Sommerfeld, A.: Atomic Structure and Spectral Lines, vol. 1. State Publishing House of Technical Literature, Moscow (1956)Google Scholar
  6. 6.
    Ilchenko, M.E., Zhivkov, A.P.: Two-channel microwave bandpass filter. Elektronnaya Tekhnika Elektronika SVC (9), 12–14 (1989)Google Scholar
  7. 7.
    Guillemin, E.A.: Synthesis of Passive Networks: Theory and Methods Appropriate to the Realization and Approximation Problems. Wiley, Hoboken (1957)Google Scholar
  8. 8.
    Bosyy, N.D.: Electric Filters. Gos. izd-vo tekhn. lit-ry USSR, Kyiv (1959)Google Scholar
  9. 9.
    Kamenetskii, E., Sadreev, A., Miroshnichenko, A.: Fano Resonances in Optics and Microwaves. Springer, Heidelberg (2018)CrossRefGoogle Scholar
  10. 10.
    Tribelsky, M.I.: Fano resonances in quantum and classical mechanics. MIREA (2012)Google Scholar
  11. 11.
    Baskakov, S.I.: Radio circuits and signals. M. Higher School (1998)Google Scholar
  12. 12.
    Temesh, T., Mitr, S.: The modern theory of filters and their design, p. 560 (1977)Google Scholar
  13. 13.
    Bessonov, L.A.: Theoretical Foundations of Electrical Engineering. Electrical Circuits, 10th edn. Gardariki, Moscow (2002)Google Scholar
  14. 14.
    Karni, S.: Network Theory: Analysis and Synthesis. Allyn and Bacon, Boston (1966)Google Scholar
  15. 15.
    Ulakhovich, D.A.: Fundamentals of the theory of linear electrical circuits, Petersburg, p. 816 (2009)Google Scholar
  16. 16.
    Siebert, W.M.: Circuits, Signals, and Systems. The MIT Press, Cambridge (1985)Google Scholar
  17. 17.
    Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)CrossRefGoogle Scholar
  18. 18.
    Fang, N., et al.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)CrossRefGoogle Scholar
  19. 19.
    Smith, D.R., et al.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)CrossRefGoogle Scholar
  20. 20.
    Gorodetsky, M.L.: Giant-quality optical microresonators, p. 415. Fizmatlit (2011)Google Scholar
  21. 21.
    Rabinovich, M.I., Trubetsov, D.I.: Introduction to the theory of oscillations and waves, p. 560 (2000)Google Scholar
  22. 22.
    Crawford Jr., F.S.: Waves (Berkeley Physics Course, Volume 3). Mcgraw Hill College, New York City (1968)Google Scholar
  23. 23.
    Landau, L.D., Lifshitz, E.M.: Mechanics: Volume 1 (Course of Theoretical Physics S). Butterworth-Heinemann, Oxford (1976)Google Scholar
  24. 24.
    Lazarev, L.A.: Panels with low-Q resonators that have a theoretically infinite soundproofing ability at one frequency. Acoust. J. 61(4), 522–528 (2015)MathSciNetGoogle Scholar
  25. 25.
    Baena, J.D., et al.: Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005)CrossRefGoogle Scholar
  26. 26.
    Gay-Balmaz, P., Martin, O.J.F.: Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys. 92(5), 2929–2936 (2002)CrossRefGoogle Scholar
  27. 27.
    Baena, D., Bonache, J.: Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53, 1451–1461 (2005)CrossRefGoogle Scholar
  28. 28.
    Capolino, F.: Metamaterials Handbook. Taylor & Francis Group/CRC Press, Boca Raton/Milton Park (2009). Vols. 1, 2Google Scholar
  29. 29.
    Garrido, L.: Classical analog of electromagnetically induced transparency. Am. J. Phys. 70, 37 (2002)CrossRefGoogle Scholar
  30. 30.
    Luo, S.: A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes ieee trans. Microw. Theory Tech. 58, 3427–3432 (2010)Google Scholar
  31. 31.
    Lin, L., Wu, B.: A novel quad-mode resonator and its application to dual-band bandpass filters. Prog. Electromagn. Res. 43, 95–104 (2013)CrossRefGoogle Scholar
  32. 32.
    Ferran, M., Zhu, L.: Balanced Microwave Filters, p. 688. Wiley-IEEE Press, Hoboken (2018)Google Scholar
  33. 33.
    Helszajn, J.: Passive and Active Microwave Circuit, p. 274. Wiley, Hoboken (1978)Google Scholar
  34. 34.
    Ilchenko, M.E., Zhivkov, A.P.: Areas of degeneration oscillations in metamaterial cells. In: 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics, UkrMiCo, pp. 1–4 (2017)Google Scholar
  35. 35.
    USSR Inventor’s Certificate 1529321Google Scholar
  36. 36.
    Ilchenko, M.: Selected Works. Naukova Dumka, p. 72 (2011)Google Scholar
  37. 37.
    Zakharov, A., Ilchenko, M.E.: Planar three-resonator bandpass filters with cross coupling. J. Commun. Technol. Electron. 62, 185–193 (2017)CrossRefGoogle Scholar
  38. 38.
    Zakharov, A., Ilchenko, M.E.: Thin bandpass filters containing sections of symmetric strip transmission line. J. Commun. Technol. Electron. 58, 728–736 (2013)CrossRefGoogle Scholar
  39. 39.
    Zakharov, A., Ilchenko, M.: Two types of trisection bandpass filters with mixed cross-coupling. IEEE Microw. Wirel. Compon. Lett. 28, 585–587 (2018)CrossRefGoogle Scholar
  40. 40.
    Mandelstam, L.I.: Lectures on the theory of oscillations. Science (1972)Google Scholar
  41. 41.
    Pippard, A.B.: The Physics of Vibration, p. 656. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  42. 42.
    von Neumann, J., Wigner, E.: Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z. 30, 467–470 (1929)zbMATHGoogle Scholar
  43. 43.
  44. 44.
    Louisell, H.: Coupled mode and parametric electronics (1960)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations