Fiber-Optic and Laser Sensors-Goniometers

  • S. IvanovEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 560)


Fiber-optic and laser sensors – goniometers are sensors for measurement of rotation angle of an object. Those sensors can be used in many areas of science and technology, including telecommunications (measurement of rotation angle of an antenna).

Creation of this class of devices became possible only with the development and improvement of the elemental basis of quantum electronics. The principle of operation of optical goniometers is based on the vortical effect of Sagnac.

The interest of foreign firms in optical goniometers is based on their potential applications in many fields of science and technology. In some cases these devices can completely replace difficult expensive electromechanical decision. The Institute of Telecommunication Systems has developed some types of such sensors based on the original engineering solutions.


Fiber-optic goniometer Laser goniometer Rotation angle meter 


  1. 1.
    Aronowitz, F.: Fundamentals of the ring laser gyro. Opt. Gyros Appl. 339, 3.1–3.45 (1999)Google Scholar
  2. 2.
    Lahham, J.I.: Tuned support structure for structure-borne noise reduction of inertial navigation with dithered ring laser gyros (RLG). In: Lahham, J.I., Wigent, D.J., Coleman, A.L. (eds.) Position, Location and Navigation Symposium, PLANS, San Diego, USA, pp. 419–428 (2000).
  3. 3.
    Yin, Sh, Ruffin, P.B., Yu, F.T.S. (eds.): Fiber Optic Sensors, 2nd edn, p. 494. CRC Press, Boca Raton (2008)Google Scholar
  4. 4.
    Chen, X., Shen, C.: Study on temperature error processing technique for fiber optic gyroscope. Optik – Int. J. Light Electron Opt. 124(9), 784–792 (2013). Scholar
  5. 5.
    Jia, M., Yang, G.: Research of optical fiber coil winding model based on large-deformation theory of elasticity and its application. Chin. J. Aeronaut. 24, 640–647 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhou, K., Hu, K., Dong, F.: Single-mode fiber gyroscope with three depolarizers. Optik – Int. J. Light Electron Opt. 125(2), 781–784 (2014). Scholar
  7. 7.
    Medjadba, H., Lecler, S., Simohamed, L.M., Fontaine, J., Meyrueis, P.: Investigation of mode coupling effects on sensitivity and bias of a multimode fiber loop interferometer: application to an optimal design of a multimode fiber gyroscope. Opt. Fiber Technol. 17(1), 50–58 (2011). Scholar
  8. 8.
    Ivanov, S.V., Volovyk, V., Slabukhin, I.S.: Rozrobka modeli vzaiemovplyvu vibropidvisiv lazernykh hiroskopiv v BINS (Development of model of interaction of laser gyros’ vibration suspensions in the strapdown inertial system). East.-Eur. J. Enterp. Technol. 3(7), 42–47 (2015)CrossRefGoogle Scholar
  9. 9.
    Ivanov, S.V., Ilkiv, M.I.: Metod keruvannia volokonnym interferometrom iz zamknutym konturom zvorotnoho zviazku (Control method of fiber interferometer with closed feedback loop). Informatsiini systemy, mekhanika ta keruvannia: naukovo-tekhnichnyi zbirnyk (9), 113–124 (2013). Refs.: 2 titlesGoogle Scholar
  10. 10.
    Ivanov, S.V.: Vplyv parametriv elementiv volokonno-optychnoho hiroskopa z vidkrytoiu petleiu zvorotnoho zviazku na tochnist vymiriuvannia (Influence of parameters of open-loop fiber-optic gyro’s components on measurement precision). East.-Eur. J. Enterp. Technol. 1(9), 16–24 (2016)CrossRefGoogle Scholar
  11. 11.
    Ivanov, S.V.: Porivnialnyi analiz efektyvnosti vydiv namotky volokna chutlyvoho elementa volokonno-optychnoho hiroskopa v umovakh zminy temperatury (Comparative analysis of the efficiency of fiber winding types used in the fiber-optic gyro sensor coil under temperature variation conditions). Naukovi visti NTUU «KPI»: mizhnarodnyi naukovo-tekhnichnyi zhurnal 1(105), 99–107 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations