Microbial Communities Accompanying Cultivated and Wild Boswellia sacra Trees

  • Ahmed Al-Harrasi
  • Abdul Latif Khan
  • Sajjad Asaf
  • Ahmed Al-Rawahi


Boswellia sacra has been studied with attention to the rhizosphere microbiota in its root zone. The current chapter discusses the bacterial and fungal rhizosphere communities living with both cultivated and wild B. sacra tree populations studied using next-generation sequencing approaches. The results revealed that Ascomycota and Basidiomycota were abundant in wild and cultivated populations, respectively. Furthermore, Actinobacteria were abundant in wild populations, and Proteobacteria and Acidobacteria were abundant in cultivated populations. Higher quantities of glucosidases, cellulases and IAA were found in cultivated than in wild tree rhizospheres.


Rhizosphere Microbiota Next-generation sequencing Population Glucosidases Cellulases Fungi Bacteria 


  1. Akinsanya, M. A., Goh, J. K., Lim, S. P., & Ting, A. S. Y. (2015). Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genom Data, 6, 159–163.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38(1), 145–180.CrossRefPubMedGoogle Scholar
  3. Berendsen, R. L., Pieterse, C. M., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486.CrossRefPubMedGoogle Scholar
  4. Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.CrossRefPubMedGoogle Scholar
  5. Coleman-Derr, D., Desgarennes, D., Fonseca-Garcia, C., Gross, S., Clingenpeel, S., Woyke, T., … Tringe, S. G. (2016). Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist, 209(2), 798–811.CrossRefPubMedGoogle Scholar
  6. Debnath, R., Yadav, A., Gupta, V. K., Singh, B. P., Handique, P. J., & Saikia, R. (2016). Rhizospheric bacterial community of endemic Rhododendron arboreum Sm. Ssp. delavayi along eastern Himalayan slope in Tawang. Frontiers in Plant Science, 7, 1345.CrossRefPubMedPubMedCentralGoogle Scholar
  7. El-Nagerabi, S. A., Elshafie, A. E., & Alkhanjari, S. S. (2014). Endophytic fungi associated with endogenous Boswellia sacra. Biodiversitas Journal of Biological Diversity, 15(1).Google Scholar
  8. Fonseca-García, C., Coleman-Derr, D., Garrido, E., Visel, A., Tringe, S. G., & Partida-Martínez, L. P. (2016). The cacti microbiome: Interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, 7, 150.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Garcia, A., Polonio, J., Polli, A., Santos, C., Rhoden, S., Quecine, M., … Pamphile, J. (2016). Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing. Genetics and molecular research: GMR, 15(4).Google Scholar
  10. Golinska, P., Wypij, M., Agarkar, G., Rathod, D., Dahm, H., & Rai, M. (2015). Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek, 108(2), 267–289.Google Scholar
  11. Hao, D., Ma, P., Mu, J., Chen, S., Xiao, P., Peng, Y., … Sun, C. (2012). De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum. Science China Life Sciences, 55(5), 452–466.CrossRefPubMedGoogle Scholar
  12. Horton, M. W., Bodenhausen, N., Beilsmith, K., Meng, D., Muegge, B. D., Subramanian, S., ... & Bergelson, J. (2014). Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications, 5, 5320.Google Scholar
  13. Humphrey, P. T., Nguyen, T. T., Villalobos, M. M., & Whiteman, N. K. (2014). Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Molecular Ecology, 23(6), 1497–1515.CrossRefPubMedGoogle Scholar
  14. Kaplan, D., Maymon, M., Agapakis, C. M., Lee, A., Wang, A., Prigge, B. A., … Hirsch, A. M. (2013). A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. American Journal of Botany, 100(9), 1713–1725.CrossRefPubMedGoogle Scholar
  15. Kembel, S. W., Eisen, J. A., Pollard, K. S., & Green, J. L. (2011). The phylogenetic diversity of metagenomes. PLoS One 6: e23214.Google Scholar
  16. Khan, A. L., Al-Harrasi, A., Al-Rawahi, A., Al-Farsi, Z., Al-Mamari, A., Waqas, M., … Shin, J.-H. (2016). Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One, 11(6), e0158207.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Khan, A. L., Asaf, S., Al-Rawahi, A., Lee, I. J., & Al-Harrasi, A. (2017). Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree. PloS one, 12(10), e0186939.Google Scholar
  18. Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., … Vorholt, J. A. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. The ISME Journal, 6(7), 1378.CrossRefPubMedGoogle Scholar
  19. Kuang, D.-Y., Wu, H., Wang, Y.-L., Gao, L.-M., Zhang, S.-Z., & Lu, L. (2011). Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): Implication for DNA barcoding and population genetics. Genome, 54(8), 663–673.CrossRefPubMedGoogle Scholar
  20. Lebeis, S. L., Paredes, S. H., Lundberg, D. S., Breakfield, N., Gehring, J., McDonald, M., ... & Dangl, J. L. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 349(6250), 860–864.Google Scholar
  21. Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., … Cherif, A. (2012). A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One, 7(10), e48479.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pascual, J., Blanco, S., García-López, M., García-Salamanca, A., Bursakov, S. A., Genilloud, O., … van Dillewijn, P. (2016). Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada National Park (Spain) through culture-dependent and independent approaches. PLoS One, 11(1), e0146558.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., … Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 201302837.Google Scholar
  25. Pfeiffer, S., Mitter, B., Oswald, A., Schloter-Hai, B., Schloter, M., Declerck, S., & Sessitsch, A. (2016). Rhizosphere microbiomes of potato cultivated in the high Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiology Ecology, 93(2), fiw242.CrossRefPubMedGoogle Scholar
  26. Qi, X., Wang, E., Xing, M., Zhao, W., & Chen, X. (2012). Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World Journal of Microbiology and Biotechnology, 28(5), 2257–2265.CrossRefPubMedGoogle Scholar
  27. Ritpitakphong, U., Falquet, L., Vimoltust, A., Berger, A., Métraux, J. P., & L’Haridon, F. (2016). The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytologist, 210(3), 1033–1043.CrossRefPubMedGoogle Scholar
  28. Strong, P., & Claus, H. (2011). Laccase: A review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology, 41(4), 373–434.CrossRefGoogle Scholar
  29. Taketani, R. G., Lançoni, M. D., Kavamura, V. N., Durrer, A., Andreote, F. D., & Melo, I. S. (2017). Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system. Microbial Ecology, 73(1), 153–161.CrossRefPubMedGoogle Scholar
  30. Tan, Y., Cui, Y., Li, H., Kuang, A., Li, X., Wei, Y., & Ji, X. (2017). Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. Journal of Basic Microbiology, 57(4), 337–344.CrossRefPubMedGoogle Scholar
  31. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196–1206.CrossRefPubMedGoogle Scholar
  32. Wingender, G., Stepniak, D., Krebs, P., Lin, L., McBride, S., Wei, B., … Kronenberg, M. (2012). Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology, 143(2), 418–428.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wu, P., Xiong, X., Xu, Z., Lu, C., Cheng, H., Lyu, X., … Lyu, Y. (2016). Bacterial communities in the rhizospheres of three mangrove tree species from Beilun Estuary, China. PLoS One, 11(10), e0164082.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed Al-Harrasi
    • 1
  • Abdul Latif Khan
    • 1
  • Sajjad Asaf
    • 1
  • Ahmed Al-Rawahi
    • 1
  1. 1.University of NizwaNizwaOman

Personalised recommendations