Frankincense: Tapping, Harvesting and Production

  • Ahmed Al-Harrasi
  • Abdul Latif Khan
  • Sajjad Asaf
  • Ahmed Al-Rawahi


The frankincense harvested from the Boswellia tree is produced through the energy-driven process of photosynthesis and the later biosynthesis of secondary metabolites in the smooth endoplasmic reticulum and leucoplast. Boswellic acids are important bioactive compounds that are synthesized through the mevalonic acid pathway. These compounds are the essential parts of resin acids, which, after synthesis, are supplied via an active or passive transport system into axial or radial resin canals. The resin is produced constitutively (stored) or de novo in response to tapping. Resin collection provides a subsistence supply of economic benefits to many communities in African countries, whereas the market for the final product and its chain is mostly occupied by European and North American countries. The production of oleoresin is often compromised by factors related to tree growth, climatic conditions, unsustainable harvests and gaps in the market supply chain. The current literature is deficient in uncovering the exact amount of oleoresin produced in the world, and the equal distribution of benefits at the grassroots level and low community awareness about the harvest are challenging to the sustainable supply of frankincense.


Harvesting Resin canal Composition Terpenoid biosynthesis Climate change Marketing 


  1. Al-Harrasi, A., Rehman, N. U., Khan, A. L., Al-Broumi, M., Al-Amri, I., Hussain, J., … Csuk, R. (2018). Chemical, molecular and structural studies of Boswellia species: β-Boswellic Aldehyde and 3-epi-11β-Dihydroxy BA as precursors in biosynthesis of boswellic acids. PLoS One, 13(6), e0198666.PubMedPubMedCentralGoogle Scholar
  2. Al-Qurashi, A. D., & Awad, M. A. (2011). 5-Aminolevulinc acid increases tree yield and improves fruit quality of ‘Rabia’ and ‘Sukkariat-Yanbo’ date palm cultivars under hot arid climate. Scientia Horticulturae, 129(3), 441–448. Scholar
  3. Ammon, H. (2006). Boswellic acids in chronic inflammatory diseases. Planta Medica, 72(12), 1100–1116.PubMedCrossRefGoogle Scholar
  4. Aregawi, B. (1997). Preliminary survey on forest products utilization and marketing in Tigray. Mekelle, Ethiopia: Tigray Bureau of Agricultural Development and Natural Resources.Google Scholar
  5. Boschiero, F. A., & Tomazzello-Filho, M. (2012). Anatomical aspects of resin canals and oleoresin production in pine trees. In Resin: Biology, chemistry and applications (pp. 67–86). Kerala, India: Research Signpost.Google Scholar
  6. Brown, J. H. (1995). Macroecology. University of Chicago Press.Google Scholar
  7. Caro, T. (2005). Antipredator defenses in birds and mammals. University of Chicago Press.Google Scholar
  8. Chikamai, B., & Casadei, E. (2005). Production and marketing of gum resins. Frankincense, Myrrh and Opoponax.Google Scholar
  9. Coulter, J. (1987). Market study for frankincense and myrrh from Somalia. Chatham, UK: National Resources Institute.Google Scholar
  10. Cunningham, A., Brinckmann, J., Kulloli, R., & Schippmann, U. (2018). Rising trade, declining stocks: The global gugul (Commiphora wightii) trade. Journal of Ethnopharmacology, 223, 22.PubMedCrossRefGoogle Scholar
  11. Davis, E. M., & Croteau, R. (2000). Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes Biosynthesis (pp. 53–95). Springer.Google Scholar
  12. Eslamieh, J. (2010). Creating “perfect” Boswellia. Cactus and Succulent Journal, 82(3), 126–131.CrossRefGoogle Scholar
  13. Farah, A. Y. (1994). The milk of the Boswellia forests: Frankincense production among the pastoral Somali. EPOS, Environmental Policy and Society.Google Scholar
  14. Gaylord, T. G., Barrows, F. T., Teague, A. M., Johansen, K. A., Overturf, K. E., & Shepherd, B. (2007). Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture, 269(1–4), 514–524.CrossRefGoogle Scholar
  15. Gebrehiwot, K., Muys, B., Haile, M., & Mitloehner, R. (2003). Introducing Boswellia papyrifera (Del.) Hochst and its non-timber forest product, frankincense. International Forestry Review, 5(4), 348–353.CrossRefGoogle Scholar
  16. Gebremedhin, T. (1997). Boswellia papyrifera (Del.) hochst. From Western Tigray: Opportunities, constraints and seed germination responses.Google Scholar
  17. Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2–3), 90–104.CrossRefGoogle Scholar
  18. Grimaldi, D. (2009). Pushing back amber production. Science, 326(5949), 51–52.PubMedCrossRefGoogle Scholar
  19. Groenendijk, P., Eshete, A., Sterck, F. J., Zuidema, P. A., & Bongers, F. (2012). Limitations to sustainable frankincense production: Blocked regeneration, high adult mortality and declining populations. Journal of Applied Ecology, 49(1), 164–173.CrossRefGoogle Scholar
  20. Hall, D. E., Zerbe, P., Jancsik, S., Quesada, A. L., Dullat, H., Madilao, L. L., … Bohlmann, J. (2012). Evolution of conifer diterpene synthases: Diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. Plant Physiology, 112.208546.Google Scholar
  21. Hall, R. L., & Oser, B. L. (1965). Recent progress in consideration of flavoring ingredients under food additives amendment. 3. Gras substances. Food Technology, 19(2 P 2), 151.Google Scholar
  22. Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. USA: Oxford University Press.CrossRefGoogle Scholar
  23. Hamberger, B., & Bohlmann, J. (2006). Cytochrome P450 mono-oxygenases in conifer genomes: Discovery of members of the terpenoid oxygenase superfamily in spruce and pine. Portland Press Limited.Google Scholar
  24. Hassan, B., Glover, E. K., Luukkanen, O., Chikamai, B., Jamnadass, R., Iiyama, M., & Kanninen, M. (2011). The role of Boswellia and Commiphora species in rural livelihood security and climate change adaptation in the Horn of Africa: Case study of Northeastern Kenya. International Journal of Social Forestry, 4(1), 86–112.Google Scholar
  25. Index, M. (1996). An encyclopedia of chemicals, drugs and biologicals (12th ed., p. 8697). USA: Merck and Co. INC.Google Scholar
  26. Keeling, C. I., & Bohlmann, J. (2006). Diterpene resin acids in conifers. Phytochemistry, 67(22), 2415–2423.PubMedCrossRefGoogle Scholar
  27. Knebel, L., Robison, D. J., Wentworth, T. R., & Klepzig, K. D. (2008). Resin flow responses to fertilization, wounding and fungal inoculation in loblolly pine (Pinus taeda) in North Carolina. Tree physiology, 28(6), 847–853.PubMedCrossRefGoogle Scholar
  28. Kolosova, N., & Bohlmann, J. (2012). Conifer defense against insects and fungal pathogens Growth and defence in plants (pp. 85–109). Springer.Google Scholar
  29. Krokene, P., & Nagy, N. E. (2012). Anatomical aspects of resin-based defences in pine. Pine Resin: Biology, Chemistry and Applications, 67–86.Google Scholar
  30. Lange, B. M., & Ghassemian, M. (2003). Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol, 51(6), 925–948.PubMedCrossRefGoogle Scholar
  31. Langenheim, J. H. (2003). Plant resins: chemistry, evolution, ecology, and ethnobotany. Oregon, USA: Timber Press.Google Scholar
  32. Lemenih, M., Abebe, T., & Olsson, M. (2003). Gum and resin resources from some Acacia, Boswellia and Commiphora species and their economic contributions in Liban, south-east Ethiopia. Journal of Arid Environments, 55(3), 465–482.CrossRefGoogle Scholar
  33. Lemenih, M., & Kassa, H. (2011). Opportunities and challenges for sustainable production and marketing of gums and resins in Ethiopia. Bogor, Indonesia: Cifor.Google Scholar
  34. Lemenih, M., Wiersum, K., Woldeamanuel, T., & Bongers, F. (2014). Diversity and dynamics of management of gum and resin resources in Ethiopia: a trade-off between domestication and degradation. Land degradation & development, 25(2), 130–142.CrossRefGoogle Scholar
  35. Lichtenthaler, H. K., Schwender, J., Disch, A., & Rohmer, M. (1997). Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS letters, 400(3), 271–274.PubMedCrossRefGoogle Scholar
  36. Lombardero, M., Ayres, M. P., Lorio, P. L., Jr., & Ruel, J. J. (2000). Environmental effects on constitutive and inducible resin defences of Pinus taeda. Ecology letters, 3(4), 329–339.CrossRefGoogle Scholar
  37. MacMillan, J. (2001). Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of plant growth regulation, 20(4), 387–442.PubMedCrossRefGoogle Scholar
  38. Martín-Ramos, P., Fernández-Coppel, I. A., Ruíz-Potosme, N. M., & Martín-Gil, J. (2018). Potential of ATR-FTIR Spectroscopy for the Classification of Natural Resins. Biology, Engineering, Medicine and Science Reports, 4(1).Google Scholar
  39. Martin, D., Tholl, D., Gershenzon, J., & Bohlmann, J. (2002). Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant physiology, 129(3), 1003–1018.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Martin, S., Giannone, G., Andriantsitohaina, R., & Carmen Martinez, M. (2003). Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. British journal of pharmacology, 139(6), 1095–1102.PubMedPubMedCentralCrossRefGoogle Scholar
  41. McGarvey, D. J., & Croteau, R. (1995). Terpenoid metabolism. The Plant Cell, 7(7), 1015.PubMedPubMedCentralGoogle Scholar
  42. Mckenna, D. J., & Hughes, K. (2014). The incense bible: Plant scents that transcend world culture, medicine, and spirituality. Routledge.Google Scholar
  43. Mengistu, T., Sterck, F. J., Fetene, M., & Bongers, F. (2013). Frankincense tapping reduces the carbohydrate storage of Boswellia trees. Tree physiology, 33(6), 601–608.PubMedCrossRefGoogle Scholar
  44. Michie, C. A., & Cooper, E. (1991). Frankincense and myrrh as remedies in children. Journal of the Royal Society of Medicine, 84(10), 602.PubMedPubMedCentralGoogle Scholar
  45. Mitchell-Olds, T., & Pedersen, D. (1998). The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. Genetics, 149(2), 739–747.PubMedPubMedCentralGoogle Scholar
  46. Miyamoto, S., Martinez, G. R., Medeiros, M. H., & Di Mascio, P. (2014). Singlet molecular oxygen generated by biological hydroperoxides. Journal of Photochemistry and Photobiology B: Biology, 139, 24–33.CrossRefGoogle Scholar
  47. Mumm, R., & Hilker, M. (2006). Direct and indirect chemical defence of pine against folivorous insects. Trends in plant science, 11(7), 351–358.PubMedCrossRefGoogle Scholar
  48. Mutke, J., & Barthlott, W. (2005). Patterns of vascular plant diversity at continental to global scales. Biologiske skrifter, 55(4), 521–531.Google Scholar
  49. Novick, K., Katul, G., McCarthy, H., & Oren, R. (2012). Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility. Tree physiology, 32(6), 752–763.PubMedCrossRefGoogle Scholar
  50. Ogbazghi, W., Bongers, F., Rijkers, T., & Wessel, M. (2006). Population structure and morphology of the frankincense tree Boswellia papyrifera along an altitude gradient in Eritrea. Journal of the Drylands, 1(1), 85–94.Google Scholar
  51. Ogbazghi, W., Rijkers, T., Wessel, M., & Bongers, F. (2006). Distribution of the frankincense tree Boswellia papyrifera in Eritrea: the role of environment and land use. Journal of Biogeography, 33(3), 524–535.CrossRefGoogle Scholar
  52. Phillips, M. A., & Croteau, R. B. (1999). Resin-based defenses in conifers. Trends in plant science, 4(5), 184–190.PubMedCrossRefGoogle Scholar
  53. Pospíšil, P., Prasad, A., & Rác, M. (2014). Role of reactive oxygen species in ultra-weak photon emission in biological systems. Journal of Photochemistry and Photobiology B: Biology, 139, 11–23.CrossRefGoogle Scholar
  54. Rani, M. S., Foster, G. R., Leung, S., Leaman, D., Stark, G. R., & Ransohoff, R. M. (1996). Characterization of β-R1, a gene that is selectively induced by interferon β (IFN-β) compared with IFN-α. Journal of Biological Chemistry, 271(37), 22,878–22,884.CrossRefGoogle Scholar
  55. Rehman, N. U., Ali, L., Al-Harrasi, A., Mabood, F., Al-Broumi, M., Khan, A. L., … Csuk, R. (2018). Quantification of AKBA in Boswellia sacra Using NIRS Coupled with PLSR as an Alternative Method and Cross-Validation by HPLC. Phytochemical Analysis, 29(2), 137–143.PubMedCrossRefGoogle Scholar
  56. Ro, D.-K., & Bohlmann, J. (2006). Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry, 67(15), 1572–1578.PubMedCrossRefGoogle Scholar
  57. Roberts, M. R. (2003). 14–3-3 proteins find new partners in plant cell signalling. Trends in plant science, 8(5), 218–223.PubMedCrossRefGoogle Scholar
  58. Rodrıguez-Concepción, M., & Boronat, A. (2002). Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant physiology, 130(3), 1079–1089.PubMedCrossRefGoogle Scholar
  59. Rodríguez-García, A., Madrigal, J., González-Sancho, D., Gil, L., Guijarro, M., & Hernando, C. (2018). Can prescribed burning improve resin yield in a tapped Pinus pinaster stand? Industrial Crops and Products, 124, 91–98.CrossRefGoogle Scholar
  60. Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. Journal of experimental botany, 59(5), 1109–1114.PubMedCrossRefGoogle Scholar
  61. Ruel, J. J., Ayres, M. P., Lorio, J., & Peter, L. (1998). Loblolly pine responds to mechanical wounding with increased resin flow. Canadian Journal of Forest Research, 28(4), 596–602.CrossRefGoogle Scholar
  62. Schmidt, A., & Gershenzon, J. (2008). Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry, 69(1), 49–57.PubMedCrossRefGoogle Scholar
  63. Steele, C. L., Katoh, S., Bohlmann, J., & Croteau, R. (1998). Regulation of oleoresinosis in grand fir (Abies grandis): differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant physiology, 116(4), 1497–1504.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Steenkamp, C. J., Vogel, J., Fuls, A., Van Rooyen, N., & Van Rooyen, M. W. (2008). Age determination of Acacia erioloba trees in the Kalahari. Journal of Arid Environments, 72(4), 302–313.CrossRefGoogle Scholar
  65. Stenius, P., ed. (2000). Forest Products Chemistry. Papermaking Science and Technology. 3. Finland, 73–76.Google Scholar
  66. Stiles, W. B. (2003). Qualitative research: Evaluating the process and the product. Handbook of clinical health psychology, 24, 477–500.Google Scholar
  67. Tadesse, W., Desalegn, G., & Alia, R. (2007). Natural gum and resin bearing species of Ethiopia and their potential applications. Forest Systems, 16(3), 211–221.Google Scholar
  68. Taniguchi, Y., Taniguchi, H., Yamada, M., Matsukura, Y., Koizumi, H., Furihata, K., & Shindo, K. (2014). Analysis of the components of hard resin in hops (Humulus lupulus L.) and structural elucidation of their transformation products formed during the brewing process. Journal of Agricultural and Food Chemistry, 62(47)., 11,602–11,612.Google Scholar
  69. Tholl, D. (2006). Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current opinion in plant biology, 9(3), 297–304.PubMedCrossRefGoogle Scholar
  70. Thulin, M., & Claeson, P. (1991). The botanical origin of Scented Myrrh (Blssabol or Habak Hadi). Economic Botany, 45(4), 487–494.CrossRefGoogle Scholar
  71. Tolera, M., Sass-Klaassen, U., Eshete, A., Bongers, F., & Sterck, F. J. (2013). Frankincense tree recruitment failed over the past half century. Forest ecology and management, 304, 65–72.CrossRefGoogle Scholar
  72. Trapp, S. C., & Croteau, R. B. (2001). Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158(2), 811–832.PubMedPubMedCentralGoogle Scholar
  73. Tucker, G. (1986). Pharamacokinetics of local anaesthetics. British Journal of Anaesthesia, 58(7), 717–731.PubMedCrossRefGoogle Scholar
  74. Vogel, B. S., Wildung, M. R., Vogel, G., & Croteau, R. (1996). Abietadiene synthase from grand fir (Abies grandis) cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. Journal of Biological Chemistry, 271(38), 23,262–23,268.CrossRefGoogle Scholar
  75. Wahab, S. A., Aboutabl, E., El-Zalabani, S., Fouad, H., De Pooter, H., & El-Fallaha, B. (1987). The essential oil of olibanum. Planta medica, 53(04), 382–384.PubMedCrossRefGoogle Scholar
  76. Walter, M. H., Hans, J., & Strack, D. (2002). Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. The Plant Journal, 31(3), 243–254.PubMedCrossRefGoogle Scholar
  77. Wichtl, M., & Bisset, N. (1994). Herbal Drugs and Phytopharmaceuticals, Med. Stuttgart: Pharm Scientific Publ..Google Scholar
  78. Wilkens, R. T., Ayres, M. P., Lorio, P. L., & Hodges, J. D. (1998). Environmental effects on pine tree carbon budgets and resistance to bark beetles. In The productivity and sustainability of southern forest ecosystems in a changing environment (pp. 591–616). Springer.Google Scholar
  79. Wolfe, A. P., Tappert, R., Muehlenbachs, K., Boudreau, M., McKellar, R. C., Basinger, J. F., & Garrett, A. (2009). A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society of London B: Biological Sciences, rspb20090806.Google Scholar
  80. Wu, H., & Hu, Z.-h. (1997). Comparative anatomy of resin ducts of the Pinaceae. Trees, 11(3), 135–143.CrossRefGoogle Scholar
  81. Zulak, K. G., & Bohlmann, J. (2010). Terpenoid biosynthesis and specialized vascular cells of conifer defense. Journal of Integrative Plant Biology, 52(1), 86–97.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed Al-Harrasi
    • 1
  • Abdul Latif Khan
    • 1
  • Sajjad Asaf
    • 1
  • Ahmed Al-Rawahi
    • 1
  1. 1.University of NizwaNizwaOman

Personalised recommendations