The Normal Ovary: Changes in the Menstrual Cycle

  • Renato Bauman
  • Ursula Res Muravec


The ovaries can be sonographically visualized by transabdominal, transrectal, and transvaginal approach. The golden standard today is the transvaginal approach. Ultrasound provides insight into the psychological changes during the ovarian cycle. Ovaries are imaged as homogeneous, hypoechogenic ovoid structures with slightly echogenic central part. The dominant follicle can be detected between 8th and 12th day of the cycle. The dominant follicle has a linear daily diameter growth of 2–3 mm per day until ovulation, when the diameter of the dominant follicle is 18–28 mm. After ovulation the follicle is transformed in corpus luteum. Transvaginal color Doppler (TVCD) helps in better understanding of the menstrual cycle physiology. Before ovulation perifollicular flow has moderate RI (resistance index) around 0.54 ± 0.04. RI gradually declines and at ovulation measures 0.44 ± 0.04. The peak systolic velocity rises at the onset of ovulation. Corpus luteum formation is characterized with a dramatic increase of the amount of the blood flow with increased velocity and low impedance to blood flow (0.43 ± 0.04). The regression of corpus luteum is characterized with poor color Doppler signals and higher RI. The three-dimensional ultrasound (3D) can be used in order to obtain more information about the ovaries. Volume of the ovary can be measured and calculated more precisely. Dominant and other follicles can be measured automatically using SonoAVC (sonography-based automated volume count). Surface view of the inner layer of the dominant follicle can detect the cumulus oophorus. Antral follicular count can be measured by 2D or 3D ultrasound. The novel technique (SonoAVC) offers an automatic count of antral follicles. If 3D volume of the ovaries with vascularization is scanned, vascular indexes of the whole ovary can be measured (VI, vascular index; FI, flow index; and VFI, vascular flow index).

The ovaries are two small, almond-shaped organs located on either side of the uterus, attached by the ovarian ligament to the uterine fundus by the suspensory ligaments to the pelvic side wall and by the mesovarium to the broad ligament. Traditionally the ovaries can be visualized by transabdominal approach using the full bladder for better ultrasonographic visualization. With the full bladder, the intestines are pulled up, and an acoustic window that allows the distinction of the female genital organs is created. The visualization can be compromised by the quantity of the abdominal fat tissue and/or abdominal scars. Ovaries are imaged as homogeneous, hypoechogenic ovoid structures with slightly echogenic central part.

Today the transvaginal approach is a golden standard for the estimation of the ovary. The closeness of the probe and the visualized organ allows the use of higher frequency probes that give better resolution and offer more detailed visualization.


Ovary VOCAL Volumen SonoAVC Vascularization VI FI VFI AFC Ovary Transvaginal Follicle Color Doppler 


  1. 1.
    Kratochwill A. Ein neues vaginales schnittbildverfahren. Geburtshilfe Frauenheilkd. 1969;29:379–85.Google Scholar
  2. 2.
    Popp LW. Gynaekologische endosonographie. Quickborn: Klemke; 1986.Google Scholar
  3. 3.
    Merz E, Miric-Tesanic D, Weber G, Bahlmann F. Sonographic size of the uterus and ovaries in pre- and postmenopausal women. Ultrasound Obstet Gynecol. 1996;7:1–5.CrossRefGoogle Scholar
  4. 4.
    Sladkevicius P, Valentin L, Marsal K. Transvaginal grey-scale and Doppler ultrasound examinations of the uterus and ovaries in healthy postmenopausal women. Ultrasound Obstet Gynecol. 1995;6:81–90.CrossRefGoogle Scholar
  5. 5.
    Vlaisavljevic V. Echographic evidence of follicle development and maturation. Donald Sch J Ultrasound Obstet Gynecol. 2011;5(3):267–72.CrossRefGoogle Scholar
  6. 6.
    Picker RH, Smith DH, Tucker MH, Saunders DM. Ultrasonic signs of imminent ovulation. J Clin Ultrasound. 1983;11:1–2.CrossRefGoogle Scholar
  7. 7.
    Matijevic R, Grgic O. Predictive values of ultrasound monitoring of the menstrual cycle. Curr Opin Obstet Gynecol. 2005;17:405–10.CrossRefGoogle Scholar
  8. 8.
    Jarvela IY, Sladkevicius P, Kelly S, Ojha K, Nargund G, Campbell S. Three dimensional sonographic and power Doppler characterization of ovaries in late follicular phase. Ultrasound Obstet Gynecol. 2003;22(5):520–6.CrossRefGoogle Scholar
  9. 9.
    Deichert U, Daume E. Zyklische veranderungen am ovar. In: Deichert U, Ducla V, Schlief R, editors. Funktionelle sonographie in gynakologie und reproduktionsmedizin. Berlin: Springer; 1993. p. 71–132.CrossRefGoogle Scholar
  10. 10.
    Collins WP, Jurkovic D, Waterstone J, Campbell S. Ovarian morphology, endocrine function and intrafollicular blood flow during periovulatory period. Hum Reprod. 1991;6:319–24.CrossRefGoogle Scholar
  11. 11.
    Kurjak A, Schulman H, Sosic A, Zalud I, Shalan H. Transvaginal ultrasound, color flow and Doppler waveform of the postmenopausal adnexal mass. Obstet Gynecol. 1992;80:917–21.PubMedGoogle Scholar
  12. 12.
    Kurjak A, Kupesic S. Ovarian senescence and its significance on uterine and ovarian perfusion. Fertil Steril. 1995;64:532–7.CrossRefGoogle Scholar
  13. 13.
    Bourne T, Jurkovic D, Waterstone J, Campbell S, Collins WP. Intrafollicular blood flow during human ovulation. Ultrasound Obstet Gynecol. 1991;1:53–9.CrossRefGoogle Scholar
  14. 14.
    Kupesic S, Kurjak A. Uterine and ovarian perfusion during the periovulatory period assessed by transvaginal color Doppler. Fertil Steril. 1993;3:439–43.CrossRefGoogle Scholar
  15. 15.
    Van Blerkom J, Antczak M, Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod. 1997;12:1047–55.CrossRefGoogle Scholar
  16. 16.
    Nargund G, Doyle PE, Bourne TH, Parsons JH, Cheng WC, Campbell S, et al. Ultrasound derived indices of follicular blood flow before hCG administration and the prediction of oocyte recovery and preimplantation embryo quality. Hum Reprod. 1996;11:2512–7.CrossRefGoogle Scholar
  17. 17.
    Lovrec VG, Vlaisavljevic V, Reljic M. Dependence of the in-vitro fertilization capacity of the oocyte on perifollicular flow in the preovulatory period of unstimulated cycles. Wien Klin Wochenschr. 2001;113(Suppl 3):21–6.PubMedGoogle Scholar
  18. 18.
    Vlaisavljevic V, Reljic M, Lovrec VG, Zazula D, Sergent N. Measurement of perifollicular blood flow of the dominant preovulatory follicle using three-dimensional power Doppler. Ultrasound Obstet Gynecol. 2003;22:520–6.CrossRefGoogle Scholar
  19. 19.
    Vlaisavljevic V, Borko E, Radakovic B, Zazula D, Dosen M. Changes in perifollicular vascularity after administration oh human chorionic gonadotropin measured by quantitative three-dimensional power Doppler ultrasound. Wien Klin Wochenschr. 2010;122(Suppl 2):85–90.CrossRefGoogle Scholar
  20. 20.
    Kupesic S, Kurjak A, Vujisic S, Petrovic M. Luteal phase defect: comparison between Doppler velocimetry, histological and hormonal markers. Ultrasound Obstet Gynecol. 1997;9:105–12.CrossRefGoogle Scholar
  21. 21.
    Pavlik EJ, DePriest PD, Gallion HH, Ueland FR, Reedy MB, Kryscio RJ, et al. Ovarian volume related to age. Gynecol Oncol. 2000;77:410–2.CrossRefGoogle Scholar
  22. 22.
    Kupesic S, Kurjak A, Bjelos D, Vujisic S. Three-dimensional ultrasonographic ovarian measurements and in vitro fertilization outcome are related to age. Fertil Steril. 2003;79:190–7.CrossRefGoogle Scholar
  23. 23.
    Bernaschek G, Lubec G, Schaller A. Sonographische untersushungen uber das wachstum von uterus und ovarien zwischen dem 1.-14. Lebensjahr. Geburtshilfe Frauenheilkd. 1984;44:727–30.CrossRefGoogle Scholar
  24. 24.
    Jayaprakasan K, Campbell B, Hopkisson J, Johnson I, Reine-Fenning N. A prospective, comparative analysis of anti-mullerian hormone, inhibin-B, and three-dimensional ultrasound determinants of ovarian reserve in the prediction of poor response to control ovarian stimulation. Fertil Steril. 2010;3:855–64.CrossRefGoogle Scholar
  25. 25.
    Henriks DJ, Kwee WS, Mol BW, te Velde ER, Broekmans FJ. Ultrasonography as a tool for the prediction of outcome in IVF patients: a comparative meta-analysis of ovarian volume and antral follicle count. Fertil Steril. 2007;87:764–75.CrossRefGoogle Scholar
  26. 26.
    Broekmans F, de Zieger D, Howles C, Gougeon A, Trew G, Olivennes F. The antral follicle count: practical recommendations for better standardization. Fertil Steril. 2010;94(3):1044–51.CrossRefGoogle Scholar
  27. 27.
    Ruess ML, Kline J, Santos R, Levin B, Timor-Tritsch I. Age and the ovarian follicle pool assessed with transvaginal ultrasonography. Am J Obstet Gynecol. 1996;174:624–7.CrossRefGoogle Scholar
  28. 28.
    Scheffer GJ, Broekmans FJ, Looman CW, Blankenstein M, Fauser BCJM, de Jong FH, et al. The number of antral follicles in normal women with proven fertility is the best reflection of the reproductive age. Hum Reprod. 2003;18:700–6.CrossRefGoogle Scholar
  29. 29.
    Chang MW, Chiang CH, Hsieh TT, Soong YK, Hsu KH. Use of antral follicle count to predict the outcome of assisted reproductive technologies. Fertil Steril. 1998;69:505–10.CrossRefGoogle Scholar
  30. 30.
    Kline J, Kinney A, Kelly A, Reuss ML, Levin B. Prediction of antral follicle count during reproductive years. Hum Reprod. 2005;20:2179–89.CrossRefGoogle Scholar
  31. 31.
    Almog B, Shehata F, Suissa S, Holzer H, Shalom-Paz E, La Marca A. Age-related nomograms of serum antimullerian hormone levels in a population of infertile women: a multicenter study. Fertil Steril. 2011;7:2359–63.CrossRefGoogle Scholar
  32. 32.
    Ng EH, Yeung WS, Fong DY, Ho PC. Effects of age on hormonal and ultrasound markers of ovarian reserve in Chinese women with proven fertility. Hum Reprod. 2003;18:2169–74.CrossRefGoogle Scholar
  33. 33.
    Res Muravec U. Ultrazvuk u asistiranoj reprodukciji. In: Hajder E, Hajder M, editors. Neplodnost i reproduktivna endokrinologija. Tuzla: Nacionalna i univerzitetska biblioteka BIH; 2011. p. 185–203.Google Scholar
  34. 34.
    Res Muravec U. Ultrazvuk u diagnostici PCOS. In: Sindrom policističnih jajnika, M Hajder, E Hajder, E Hajder, Tuzla: Off-set, 2016:119–28.Google Scholar
  35. 35.
    Salama S, Arbo E, Lamazou F, Levaillant JM, Frydman R, Fanchin R. Reproducibility and reliability of automated volumetric measurement of single preovulatory follicles using SonoAVC. Fertil Steril. 2010;93:2069–73.CrossRefGoogle Scholar
  36. 36.
    Rodriguez-Fuentes A, Hernandez J, Garcia-Guzman R, Chinea E, Iaconianni L, Palumbo A. Prospective evaluation of automated follicle monitoring in 58 in vitro fertilization cycles: follicular volume as a indicator of oocyte maturity. Fertil Steril. 2010;93:616–20.CrossRefGoogle Scholar
  37. 37.
    Jokubkiene L, Sladkevicius P, Rovas L, Valentin L. Assessment of changes in volume and vascularity of the ovaries during the normal menstrual cycle using three-dimensional power Doppler ultrasound. Hum Reprod. 2006;10:2661–8.CrossRefGoogle Scholar
  38. 38.
    Hope JM, Long K, Kudla M, Arslan A, Tsymbal T, Strok I, et al. Three-dimensional power Doppler angiography of cyclic ovarian blood flow. J Ultrasound Med. 2009;8:1043–52.CrossRefGoogle Scholar
  39. 39.
    Engels V, Sanfrutos L, Perey-Medina T, Alvarez P, Zapardiel I, Godoy-Tunidor S, et al. Periovulation follicular volume and vascularization determined by 3D and power Doppler sonography as pregnancy predictors in intrauterine insemination cycles. J Clin Ultrasound. 2011;5:243–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Renato Bauman
    • 1
  • Ursula Res Muravec
    • 2
  1. 1.Rotunda IVF, The National Fertility Centre, The Rotunda HospitalDublinIreland
  2. 2.Medical Center Dravlje, Department for InfertilityLjubljanaSlovenia

Personalised recommendations