Advertisement

Mechanisms in Clinical Research and Medical Practice

  • Omar Ahmad

Abstract

Mario Bunge’s medical philosophy emphasizes the importance of mechanismic models in guiding the design, analysis, and practical application of clinical research. By contrast, the Evidence-Based Medicine (EBM) movement regards mechanismic hypotheses as “evidence” dissociable from, and of secondary importance to, the findings of experimental research. In agreement with Bunge, it is argued here that mechanismic models and mechanismic thinking play essential roles in both clinical research and practice. Mechanismic models in medicine view health and disease as emergent processes occurring in complex biological systems and draw upon established scientific knowledge from multiple disciplines to help identify and control parameters that have decisive effects on clinical outcomes. Models play an essential role in designing efficient and reliable population-based studies, and in detecting and correcting for random error and systematic bias in clinical research. They are important both for extrapolating the results of clinical research to novel contexts and for tailoring interventions to the specific circumstances of an individual case. Contrary to the subordinate status they are accorded by EBM, empirically-validated mechanismic models should constitute the foundation of a scientific approach to medicine.

References

  1. Angrist, J. D., & Pischke, J. S. (2009). Mostly harmless econometrics: An Empiricist’s companion. Princeton: Princeton University Press.CrossRefGoogle Scholar
  2. Aström, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton: Princeton University Press.Google Scholar
  3. Bareinboim, E., & Pearl, J. (2016). Causal inference and the data-fusion problem. Proceedings of the National Academy of Sciences USA, 113(27), 7345–7352.CrossRefGoogle Scholar
  4. Bunge, M. (2004). How does it work?: The search for explanatory mechanisms. Philosophy of the Social Sciences, 34(2), 182–210.CrossRefGoogle Scholar
  5. Bunge, M. (2013). Medical philosophy: Conceptual issues in medicine. Hackensack: World Scientific Publishing Company.CrossRefGoogle Scholar
  6. Bunge, M. (2017). Philosophy of science. Volume 2: From explanation to justification. New York: Routledge.CrossRefGoogle Scholar
  7. Bunge, M., & Mahner, M. (2001). Scientific realism: Selected essays of Mario Bunge. Amherst: Prometheus Books.Google Scholar
  8. Cartwright, N., & Deaton, A. (2017). Understanding and misunderstanding randomized controlled trials. Social Science and Medicine.  https://doi.org/10.1016/j.socscimed.2017.12.005.CrossRefGoogle Scholar
  9. Davey Smith, G., & Hemani, G. (2014). Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics, 23(R1), R89–R98.  https://doi.org/10.1093/hmg/ddu328.CrossRefGoogle Scholar
  10. Dwan, K., Altman, D. G., Arnaiz, J. A., Bloom, J., Chan, A. W., Cronin, E., Decullier, E., Easterbrook, P. J., Von Elm, E., Gamble, C., Ghersi, D., Ioannidis, J. P., Simes, J., & Williamson, P. R. (2008). Systematic review of the empirical evidence of study publication bias and outcome reporting bias. Public Library of Science One, 3(8), e3081.  https://doi.org/10.1371/journal.pone.0003081.CrossRefGoogle Scholar
  11. Eddy, D. M. (2005). Evidence-based medicine: A unified approach. Health Affairs (Millwood), 24(1), 9–17.CrossRefGoogle Scholar
  12. Greenhalgh, T., Howick, J., Maskrey, N., & Evidence-Based Medicine Renaissance Group. (2014). Evidence based medicine: A movement in crisis. British Medical Journal, 348, g3725.  https://doi.org/10.1136/bmj.g3725.CrossRefGoogle Scholar
  13. Howick, J., Glasziou, P., & Aronson, J. K. (2010). Evidence-based mechanistic reasoning. Journal of the Royal Society of Medicine, 103(11), 433–441.CrossRefGoogle Scholar
  14. Imai, K., King, G., & Stuart, E. (2008). Misunderstandings among experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society, Series A, 171(Part 2), 481–502.CrossRefGoogle Scholar
  15. Ioannidis, J. P. (2005). Why most published research findings are false. Public Library of Science Medicine, 2(8), e124.  https://doi.org/10.1371/journal.pmed.0020124.CrossRefGoogle Scholar
  16. Ioannidis, J. P., Stuart, M. E., Brownlee, S., & Strite, S. A. (2017). How to survive the medical misinformation mess. European Journal of Clinical Investigation, 47(11), 795–802.CrossRefGoogle Scholar
  17. Kent, D. M., & Hayward, R. A. (2007). Limitations of applying summary results of clinical trials to individual patients: The need for risk stratification. Journal of the American Medical Association, 298(10), 1209–1212.CrossRefGoogle Scholar
  18. King, G., Nielsen, R., Coberley, C., Pope, J. E., & Wells, A. (2011). Avoiding randomization failure in program evaluation, with application to the Medicare Health Support program. Population Health Management, 14(Suppl 1), S11–S22.  https://doi.org/10.1089/pop.2010.0074.CrossRefGoogle Scholar
  19. Lenzer, J., Hoffman, J. R., Furberg, C. D., Ioannidis, J. P., & Guideline Panel Review Working Group. (2013). Ensuring the integrity of clinical practice guidelines: A tool for protecting patients. British Medical Journal, 347, f5535.  https://doi.org/10.1136/bmj.f5535.CrossRefGoogle Scholar
  20. Machta, B. B., Ricky Chachra, R., Mark, K., Transtrum, M. K., & Sethna, J. P. (2013). Parameter space compression underlies emergent theories and predictive models. Science, 342(6158), 604–607.CrossRefGoogle Scholar
  21. Murad, M. H., Montori, V. M., Ioannidis, J. P., Jaeschke, R., Devereaux, P. J., Prasad, K., Neumann, I., Carrasco-Labra, A., Agoritsas, T., Hatala, R., Meade, M. O., Wyer, P., Cook, D. J., & Guyatt, G. (2014). How to read a systematic review and meta-analysis and apply the results to patient care: Users’ guides to the medical literature. Journal of the American Medical Association, 312(2), 171–179.CrossRefGoogle Scholar
  22. Pearl, J. (2009). Causality: Models, reasoning and inference. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. New York: Wiley.Google Scholar
  24. Snowden, T. J., van der Graaf, P. H., & Tindall, M. J. (2017). Methods of model reduction for large-scale biological systems: A survey of current methods and trends. Bulletin of Mathematical Biology, 79(7), 1449–1486.CrossRefGoogle Scholar
  25. Transtrum, M. K., & Qiu, P. (2016). Bridging mechanistic and phenomenological models of complex biological systems. Public Library of Science Computational Biology, 12(5), e1004915.  https://doi.org/10.1371/journal.pcbi.1004915.CrossRefGoogle Scholar
  26. Varadhan, R., Segal, J. B., Boyd, C. M., Wu, A. W., & Weiss, C. O. (2013). A framework for the analysis of heterogeneity of treatment effect in patient-centered outcomes research. Journal of Clinical Epidemiology, 66(8), 818–825.CrossRefGoogle Scholar
  27. White, A., Tolman, M., Thames, H. D., Withers, H. R., Mason, K. A., & Transtrum, M. K. (2016). The limitations of model-based experimental design and parameter estimation in sloppy systems. Public Library of Science Computational Biology, 12, e1005227.  https://doi.org/10.1371/journal.pcbi.1005227.CrossRefGoogle Scholar
  28. Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Omar Ahmad
    • 1
  1. 1.Department of Internal MedicineStanton Territorial HospitalYellowknifeCanada

Personalised recommendations