Location-Allocation Problem: A Methodology with VNS Metaheuristic

  • M. Beatriz Bernábe-LorancaEmail author
  • Martin Estrada-Analco
  • Rogelio González-Velázquez
  • Gerardo Martíne-Guzman
  • Ruiz-Vanoye
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)


In this work, we present beginnings of a methodology that allows the establishment of relationships between the location of the facilities and the clients’ allocation with a dense demand. The use of this application lets us know the optimal location of production facilities, warehouses or distribution centers in a geographical space. We also solve the customers’ dense demand for goods or services; this is, finding the proper location of the facilities in a populated geographic territory, where the population has a demand for services in a constant basis. Finding the location means obtaining the decimal geographical coordinates where the facility should be located, such that the transportation of products or services costs the least. The implications and practical benefits of the results of this work have allowed an enterprise to design an efficient logistics plan in benefit of its supply chain. Firstly, the territory must be partitioned by a heuristic method, due do the combinatory nature of the partitioning. After this process, the best partition is selected with the application of factorial experiment design and the surface response methodology. Once the territory has been partitioned into k zones, where the center of each zone is the distribution center, we apply the continuous dense demand function and solve the location-allocation problem for an area where the population has a dense demand for services.


Dense demand Location-allocation Methodology Response surface 


  1. 1.
    Bernábe-Loranca, M.B., González, R.: An approximation method for the P-median problem: a bioinspired tabu search and variable neighborhood search partitioning approach. Int. J. Hybrid Intell. Syst. 13(2), 87–98 (2016)CrossRefGoogle Scholar
  2. 2.
    Bernábe-Loranca, M.B., Gonzalez, R., Martínez, J.L., Olivarez, E.: A location allocation model for a territorial design problem with dense demand. Int. J. Appl. Logist. (IJAL) 6(1), 1–14 (2016)CrossRefGoogle Scholar
  3. 3.
    Bernábe-Loranca, M.B., González-Velázquez, R., Estrada-Analco, M., Bustillo-Díaz, M., Martínez-Gúzman, G., Sánchez-López, A.: Experiment design for the location-allocation problem. Appl. Math. 5(14), 2168–2183 (2014)CrossRefGoogle Scholar
  4. 4.
    Bernábe-Loranca, M.B., Rodríguez-F, M.A., González-Velázquez, R., Estrada-Analco, M.: Una propuesta Bioinspirada basada en vecindades para particionamiento. Revista Matemática, Teoría y Aplicaciones 23(1), 221–239 (2016)MathSciNetGoogle Scholar
  5. 5.
    Bernábe-Loranca, M.B., González-Velázquez, M., Estrada-Analco, M., Ruíz-Vanoye, J., Fuentes-Penna, A., Sánchez, A.: Bioinspired tabu search for geographic partitioning. In: Advances in Intelligent Systems and Computing, Proceedings of the 7th World Congress on Nature and Biologically Inspired Computing (NaBIC 2015), pp. 189–200, Pietermaritzburg, South Africa (2015)Google Scholar
  6. 6.
    Montgomery, D.: Design and Analysis of Experiments, 2nd edn. Wiley, Hoboken (1991)zbMATHGoogle Scholar
  7. 7.
    Barr, R.S., Golden, B.L., Kelly, J., Stewart, W.R., Resende, M.G.C.: Guidelines for designing and reporting on computational experiments with heuristic methods (2001)Google Scholar
  8. 8.
    Hansen, P., Mladenovic, N., Moreno, P.J.: A variable neighborhood search: methods and applications. Ann. Oper. Res. 175, 367–407 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Love, R.F.: A computational procedure for optimally locating a facility with respect to several rectangular regions. J. Reg. Sci. 18(2), 233–242 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Beatriz Bernábe-Loranca
    • 1
    Email author
  • Martin Estrada-Analco
    • 1
  • Rogelio González-Velázquez
    • 1
  • Gerardo Martíne-Guzman
    • 1
  • Ruiz-Vanoye
    • 2
  1. 1.Facultad de Ciencias de la ComputaciónBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Universidad Politécnica de PachucaZempoalaMexico

Personalised recommendations