Advertisement

Application of Artificial Neural Networks and Genetic Algorithm for the Prediction of Forest Fire Danger in Kerala

  • Maya L. PaiEmail author
  • K. S. Varsha
  • R. Arya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)

Abstract

Forest fire prediction is the most significant component of forest fire management. It is necessary because it plays an important role in resource management and recovery efforts. So, in order to model and predict such a calamity, advanced computing technologies are needed. This paper describes a detailed analysis of forest fire prediction methods based on Artificial Neural Network and Genetic algorithm (GA). The objective is to analyse forest fire prediction in Kerala, India. This paper describes Feed Forward–Back Propagation (FFBP) algorithm to train the networks; to get optimised results, GA is used. Promising results are obtained for GA approach than ANN alone.

Keywords

Kerala forest data ANN Back propagation Genetic algorithm 

References

  1. 1.
    Somashekar, R.K., Ravikumar, P., Mohan Kumar, C.N., Prakash, K.L., Nagaraja, B.C.: Burnt area mapping of Bandipur National Park, India using IRS 1C/1D LISS III data. J. Indian Soc. Rem. Sens. 37(1), 37–50 (2009)Google Scholar
  2. 2.
    Tatli, H., Türkeş, M.: Climatological evaluation of H aines forest fire weather index over the Mediterranean B asin. Meteorol. Appl. 21(3), 545–552 (2014)CrossRefGoogle Scholar
  3. 3.
    Lazaridis, M., Latos, M., Aleksandropoulou, V., Hov, Ø., Papayannis, A., Tørseth, K.: Contribution of forest fire emissions to atmospheric pollution in Greece. Air Qual. Atmos. Health 1, 14–158 (2008)CrossRefGoogle Scholar
  4. 4.
    Dawson, T.P., Butt, N., Miller, F.: The ecology of forest fires. ASEAN Biodiv. 1(3), 18–21 (2001)Google Scholar
  5. 5.
    Podur, J.J., Martell, D.L.: The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario. Ecol. Appl. 19, 1246–1252 (2006)CrossRefGoogle Scholar
  6. 6.
    Roy, P.S: Forest fire and degradation assessment using satellite remote sensing and geographic information system. Satell. Rem. Sen. GIS Appl. Agric. Meteorol. 361–400 (2003). World Meteorological Organization, SwitzerlandGoogle Scholar
  7. 7.
    Eskandari, S., Ghadikolaei, J.O., Jalilvand, H., Saradjian, M.R.: Detection of fire high-risk areas in northern forests of Iran using Dong model. World Appl. Sci. J. 27(6), 770–773 (2013)Google Scholar
  8. 8.
    Ajin, R.S., Ciobotaru, A., Vinod, P.G., Jacob, M.K.: Forest and wildland fire risk assessment using geospatial techniques: a case study of Nemmara forest division, Kerala, India. J. Wetlands Biodivers. 5, 29–37 (2015)Google Scholar
  9. 9.
    Veeraanarayanaa, B., Ravikumar, S.K.: Assessing fire risk in forest ranges of Guntur District, Andhra Pradesh: using integrated remote sensing and GIS. Int. J. Sci. Res. 3(6), 1328–1332 (2014)Google Scholar
  10. 10.
    Rajabi, M., Alesheikh, A., Chehreghan, A., Gazmeh, H.: An innovative method for forest fire risk zoning map using fuzzy inference system and GIS. Int. J. Sci. Technol. Res. 2(12), 57–64 (2013)Google Scholar
  11. 11.
    Singh, R.P., Ajay, K.: Fire risk assessment in Chitrakoot area, Satna MP, India. Res. J. Agric. Forest. Sci. 1(5), 1–4 (2013)Google Scholar
  12. 12.
    Gangapriya, P., Indulekha, K.P.: Development of GIS based disaster risk information system for decision making. Int. J. Innov. Res. Sci. Eng. Technol. 2(Suppl. 1), 140–148(2013)Google Scholar
  13. 13.
    Rothermel, P., Richard, C.: A Mathematical Model for Predicting Fire Spread in Wild Land Fires. USDA Forest Service Research Paper INT – 115, Ogden, Utah, USA (1972)Google Scholar
  14. 14.
    Sowmya, S.V., Somashekar, R.K.: Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra Wildlife Sanctuary, India. J. Environ. Biol. 31(6), 969–974 (2010)Google Scholar
  15. 15.
    Mahdavi, A., Shamsi, S.R.F., Nazari, R.: Forests and rangelands’ wildfire risk zoning using GIS and AHP techniques. Caspian J. Environ. Sci. 10(1), 43–52 (2012)Google Scholar
  16. 16.
    Wijayanto, A.K., Sani, O., Kartika, N.D., Herdiyeni, Y.: Classification model for forest fire hotspot occurrences prediction using ANFIS algorithm. In: IOP Conference on Series: Earth and Environmental Science, vol. 54, p. 012059 (2017)Google Scholar
  17. 17.
    Sakr, E., Elhajj, I.H., Mitri, G., Wejinya, U.C.: Artificial intelligence for forest fire prediction. In: International Conference on Advanced Intelligent Mechatronics Montréal, Canada, 6–9 July 2010Google Scholar
  18. 18.
    Safi, Y., Bouroumi, A.: Prediction of forest fires using artificial neural networks. Appl. Math. Sci. 7(6), 271–286 (2013)Google Scholar
  19. 19.
    Assaker, A., Darwish, T., Faour, G., Noun, M.: Use of remote sensing and GIS to assess the anthropogenic impact on forest fires in Nahr Ibrahim Watershed, Lebanon. Lebanese Sci. J. 13(1), 15–28 (2012)Google Scholar
  20. 20.
    Ojha, V.K., Dutta, P., Saha, H.: Performance analysis of neuro genetic algorithm applied on detecting proportion of components in manhole gas mixture. Int. J. Artif. Intell. Appl. 3(4), 83–98 (2012)Google Scholar
  21. 21.
    Haykin, S.S.: Neural Network a Comprehensive Foundation, 2nd edn. Pearson Prentice Hall, Upper Saddle River (2005)zbMATHGoogle Scholar
  22. 22.
    Castelli, M., Vanneschi, L., Popovič, A.: Predicting burned areas of forest fires: an artificial intelligence approach. Fire Ecol. 11(1), 106–118 (2015)CrossRefGoogle Scholar
  23. 23.
    Chavan, M.E., Das, K.K., Suryawanshi, R.S.: Forest fire risk zonation using remote sensing and GIS in Huynial watershed, Tehri Garhwal District, UA. Int. J. Basic Appl. Res. 2, 6–12 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and ITAmrita School of Arts and Sciences, Kochi, Amrita Vishwa VidyapeethamKochiIndia

Personalised recommendations