Advertisement

A Novel Swarm Intelligence Based Optimization Method: Harris’ Hawk Optimization

  • Divya BairathiEmail author
  • Dinesh Gopalani
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)

Abstract

Swarm intelligence is a modern optimization technique, and one of the most promising techniques for solving optimization problems. In this paper, a new swarm intelligence based algorithm namely, Harris’ Hawk Optimizer (HHO) is proposed. The algorithm mimics the cooperative hunting behaviour of Harris’ hawks. The algorithm is analysed for twenty five well known benchmark functions. Performance of HHO is compared with Particle Swarm Optimization (PSO), Differential Evolution (DE), Grey Wolf Optimizer (GWO) and The Whale Optimization Algorithm (WOA). HHO is implemented and results present HHO as one of the efficient optimization methods.

Keywords

Optimization Swarm intelligence Cooperative hunting Harris’ hawk optimization 

References

  1. 1.
    Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  2. 2.
    Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–72 (1992)CrossRefGoogle Scholar
  3. 3.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rechenberg, I.: Evolution strategy: nature’s way of optimization. In: Optimization: Methods and applications, possibilities and limitations, pp. 106–126. Springer, Heidelberg (1989)Google Scholar
  5. 5.
    Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, MHS 1995, pp. 39–43. IEEE (1995)Google Scholar
  7. 7.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, vol. 200 (2005)Google Scholar
  9. 9.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  10. 10.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefGoogle Scholar
  11. 11.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  12. 12.
    Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRefGoogle Scholar
  13. 13.
    Zoologger: the only raptor known to hunt in cooperative packs, New Scientist. https://www.newscientist.com
  14. 14.
    Coulson, J.O., Coulson, T.D.: Group hunting by Harris’ hawks in Texas. J. Raptor Res. 29(4), 265–267 (1995)Google Scholar
  15. 15.
    Bednarz, J.C.: Cooperative hunting in Harris’ hawks (Parabuteo unicinctus). Science 239(4847), 1525 (1988)CrossRefGoogle Scholar
  16. 16.
    Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle swarms using swarm diversity. In: IEEE Congress on Evolutionary Computation, 2008, CEC 2008, (IEEE World Congress on Computational Intelligence), pp. 1128–1134, IEEE (2008)Google Scholar
  17. 17.
    Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)CrossRefGoogle Scholar
  18. 18.
    Crepinsek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)CrossRefGoogle Scholar
  19. 19.
    Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Global Optim. 31(4), 635–672 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bansal, J.C., Sharma, H., Nagar, A., Arya, K.V.: Balanced artificial bee colony algorithm. Int. J. Artif. Intell. Soft Comput. 3(3), 222–243 (2013)CrossRefGoogle Scholar
  21. 21.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Malaviya National Institute of Technology JaipurJaipurIndia

Personalised recommendations