Advertisement

A Comparative Study of the 3D Quality Metrics: Application to Masking Database

  • Nessrine ElloumiEmail author
  • Habiba Loukil Hadj Kacem
  • Med Salim Bouhlel
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)

Abstract

High definition and 3D telemedicine offer a compelling mechanism to achieve a sense of immersion and contribute to an enhanced quality of use. 3D mesh perceptual quality is crucial for many applications. Although there exist some objective metrics for measuring distances between meshes, they do not integrate the characteristics of the human visual system and thus are unable to predict the visual quality.

Keywords

Perceptual quality Static metrics 3D 3D meshes Objective metrics Quality assessment 3D triangle mesh Human visual system Statistical modeling 

References

  1. 1.
    Cooperstock, J.: Multimodal telepresence systems. IEEE Sig. Process. Mag. 28, 77–86 (2011)CrossRefGoogle Scholar
  2. 2.
    Triki, N., Kallel, M., Bouhlel, M.S.: Imaging and HMI, foundations and complementarities. In: The 6th International Conferences: Sciences of Electronics, Technologies of Information and Telecommunications 2012, pp. 25–29, Sousse (2012).  https://doi.org/10.1109/setit.2012.6481884
  3. 3.
    Aribi, W., Khalfallah, A., Bouhlel, M.S., Elkadri, N.: Evaluation of image fusion techniques in nuclear medicine. In: The 6th International Conferences: Sciences of Electronics, Technologies of Information and Telecommunications 2012, pp. 875–880, Sousse (2012).  https://doi.org/10.1109/setit.2012.6482030
  4. 4.
    Daly, L., Brutzman, D.: X3D: extensible 3D graphics standard. IEEE Sig. Process. Mag. 24, 130–135 (2007)CrossRefGoogle Scholar
  5. 5.
    Daly, S.: Digital images and human vision. In: Watson, A.B. (ed.) MIT Press, Cambridge (1993). Ch. The visible differences predictor: an algorithm for the assessment of image fidelity, pp. 179–206Google Scholar
  6. 6.
    Masmoudi, A., Bouhlel, M. S., Puech, W.: Image encryption using chaotic standard map and engle continued fractions map. In: The 6th International Conferences: Sciences of Electronics, Technologies of Information and Telecommunications, pp. 474–480, Sousse (2012).  https://doi.org/10.1109/setit.2012.6481959
  7. 7.
    Myszkowski, K., Tawara, T., Akamine, H., Seidel, H.-P.: Perception guided global illumination solution for animation rendering. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, pp. 221–230. ACM, New York (2001)Google Scholar
  8. 8.
    Abdmouleh, M.K., Khalfallah, A., Bouhlel, M.S.: Image encryption with dynamic chaotic look-up table. In: The 6th International Conferences: Sciences of Electronics, Technologies of Information and Telecommunications, pp. 331–337, Sousse (2012).  https://doi.org/10.1109/setit.2012.6481937
  9. 9.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. In: Computer Graphics Forum, vol. 17, no. 2, pp. 167–174 (1998)Google Scholar
  10. 10.
    Luebke, D., Watson, B., Cohen, J.D., Reddy, M., Varshney, A.: Level of Detail for 3D Graphics. Elsevier Science Inc., New York (2002)Google Scholar
  11. 11.
    Aspert, N., Santa-cruz, D., Ebrahimi, T.: Mesh: measuring errors between surfaces using the hausdorff distance. In: The International Conference on Multimedia and Expo, ICME 2002, vol. 1, pp. 705–708 (2002)Google Scholar
  12. 12.
    Lavoué, G., Corsini, M.: A comparison of perceptually-based metrics for objective evaluation of geometry processing. IEEE Trans. Multimedia 12(7), 636–649 (2010)CrossRefGoogle Scholar
  13. 13.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: The 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York (2000)Google Scholar
  14. 14.
    Wu, J.-H., Hu, S.-M., Sun, J.-G., Tai, C.-L.: An effective feature preserving mesh simplification scheme based on face constriction. In: The 9th Pacific Conference on Computer Graphics and Applications, PG 2001, pp. 12–21. IEEE Computer Society (2001)Google Scholar
  15. 15.
    Drelie Gelasca, E., Ebrahimi, T., Corsini, M., Barni, M.: Objective evaluation of the perceptual quality of 3D watermarking. In: The IEEE International Conference on Image Processing, ICIP (2005)Google Scholar
  16. 16.
    Corsini, M., Drelie Gelasca, E., Ebrahimi, T., Barni, M.: Watermarked 3D mesh quality assessment. IEEE Trans. Multimedia 9(2), 247–256 (2007)CrossRefGoogle Scholar
  17. 17.
    Corsini, M., Larabi, M.C., Lavoué, G., Petřík, O., Váša, L., Wang, K.: Perceptual metrics for static and dynamic triangle meshes. In: Computer Graphics Forum (2013)Google Scholar
  18. 18.
    Torkhani, F., Wang, K., Chassery, J.M.: A curvature-tensor-based perceptual quality metric for 3D triangular meshes. Mach. Graph. Vis. J. (2013)Google Scholar
  19. 19.
    Chowdhuri, S., Roy, P., Goswami, S., Azar, A.T., Dey, N.: Rough set based adhoc network. Int. J. Serv. Sci. Manag. Eng. Technol. (IJSSMET) 3(4), 66–76 (2014)Google Scholar
  20. 20.
    Wu, J.H., Hu, S.M., Tai, C.L., Sun, J.G.: An effective feature-preserving mesh simplification scheme based on face constriction. In: Pacific Conference on Computer Graphics and Applications (2001)Google Scholar
  21. 21.
    Abouelaziz, I., Omari, M., Hassouni, M., Cherifi, H.: Reduced reference 3D mesh quality assessment based on statistical models. In: The 11th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS) (2015)Google Scholar
  22. 22.
    Lavoué, G.: A local roughness measure for 3D meshes and its application to visual masking. ACM Trans. Appl. Percept. 5, 1–21:23 (2009)CrossRefGoogle Scholar
  23. 23.
    Lavoué, G., Gelasca, E.D., Dupont, F., Baskurt, A., Ebrahimi, T.: Perceptually driven 3D distance metrics with application to watermarking. In: The SPIE Applications of Digital Image Processing XXIX, vol. 6312 (2006)Google Scholar
  24. 24.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nessrine Elloumi
    • 1
    • 2
    Email author
  • Habiba Loukil Hadj Kacem
    • 1
    • 3
  • Med Salim Bouhlel
    • 1
  1. 1.Research Unit: Sciences of Electronics, Technologies of Image and Telecommunications, Higher Institute of BiotechnologyUniversity of SfaxSfaxTunisia
  2. 2.Higher Institute of Computer Science and Telecom Hammam Sousse (ISITCom)University of SousseSousseTunisia
  3. 3.Higher Institute of Industrial ManagementUniversity of SfaxSfaxTunisia

Personalised recommendations