An Enhanced Plagiarism Detection Based on Syntactico-Semantic Knowledge

  • Wafa WaliEmail author
  • Bilel GargouriEmail author
  • Abdelmajid Ben HamadouEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)


The issue of plagiarism in documents has been present for centuries. Yet, the widespread dissemination of information technology, including the internet, made plagiarism much easier. Consequently, methods and systems aiding in the detection of plagiarism have attracted much research within the last two decades. This paper introduces a plagiarism detection technique based on the semantic knowledge, notably semantic class and thematic role. This technique analyzes and compares text based on the semantic allocation for each term in the sentence. Semantic knowledge is superior in semantically generating arguments for each sentence. Weighting for each argument generated by semantic knowledge to study its behavior is also introduced in this paper. It was found that not all arguments affect the plagiarism detection process.

In addition, experimental results on PAN13-14 ( data sets revealed significant speed-up, which outperforms the recent methods for plagiarism detection in terms of Recall and Precision measure.


Plagiarism detection Semantic similarity Thematic role Semantic class Arguments weight 


  1. 1.
    Alzahrani, S., Salim, N.: Fuzzy semantic-based string similarity for extrinsic plagiarism detection. Braschler Harman 1176, 1–8 (2010)Google Scholar
  2. 2.
    Bao, J.-P., Shen, J.-Y., Liu, X.-D., Song, Q.-B.: A survey on natural language text copy detection. J. Softw. 14(10), 1753–1760 (2003)Google Scholar
  3. 3.
    Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr, Corbaz (1901)Google Scholar
  4. 4.
    Kipper, K., Korhonen, A., Ryant, N., Palmer, M.: A large-scale extension of VerbNet with novel verb classes. In: Corino, C.O.E., Marello, C. (eds.) Proceedings of the 12th EURALEX International Congress, pp. 173–184, Torino, Italy. Edizioni dell’Orso, September 2006Google Scholar
  5. 5.
    Kent, C.K., Salim, N.: Web based cross language plagiarism detection. In: 2010 Second International Conference on Computational Intelligence, Modelling and Simulation (CIMSiM), pp. 199–204. IEEE (2010)Google Scholar
  6. 6.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  7. 7.
    Osman, A.H., Salim, N., Binwahlan, M.S., Alteeb, R., Abuobieda, A.: An improved plagiarism detection scheme based on semantic role labeling. Appl. Soft Comput. 12(5), 1493–1502 (2012)CrossRefGoogle Scholar
  8. 8.
    Paul, M., Jamal, S.: An improved SRL based plagiarism detection technique using sentence ranking. Procedia Comput. Sci. 46, 223–230 (2015)CrossRefGoogle Scholar
  9. 9.
    Shehata, S., Karray, F., Kamel, M.S.: An efficient model for enhancing text categorization using sentence semantics. Comput. Intell. 26(3), 215–231 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Shivakumar, N., Garcia-Molina, H.: SCAM: a copy detection mechanism for digital documents (1995)Google Scholar
  11. 11.
    Si, A., Leong, H.V., Lau, R.W.: Check: a document plagiarism detection system. In: Proceedings of the 1997 ACM Symposium on Applied Computing, pp. 70–77. ACM (1997)Google Scholar
  12. 12.
    Suanrnali, L., Salim, N., Binwahlan, M.S.: Automatic text summarization using feature-based fuzzy extraction. Jurnal Teknologi Maklumat 2(1), 105–155 (2009)Google Scholar
  13. 13.
    Tsatsaronis, G., Varlamis, I., Giannakoulopoulos, A., Kanellopoulos, N.: Identifying free text plagiarism based on semantic similarity. In: Proceedings of the 4th International Plagiarism Conference. Citeseer (2010)Google Scholar
  14. 14.
    Vani, K., Gupta, D.: Detection of idea plagiarism using syntax-semantic concept extractions with genetic algorithm. Expert. Syst. Appl. 73, 11–26 (2017)CrossRefGoogle Scholar
  15. 15.
    Wali, W., Gargouri, B., Hamadou, A.B.: Sentence similarity computation based on WordNet and VerbNet. Computación y Sistemas 21(4), 627–635 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.MIRACL LaboratorySfax UniversitySfaxTunisia

Personalised recommendations