Hybrid Evolutionary Algorithm for Optimizing Reliability of Complex Systems

  • Gutha Jaya Krishna
  • Vadlamani RaviEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)


In this paper, we propose a hybrid optimization algorithm of Harmony Search and Differential applied to three reliability complex system with static, extinctive constraint treatment. The proposed hybrid is contrasted with Harmony Search, Improved Modified Harmony Search, Differential Evolution, Modified Differential Evolution and other algorithms previous employed for Reliability of Complex Systems in the literature. We experimentally found that the proposed hybrid i.e. Improved Modified Harmony Search + Modified Differential Evolution needs less function evaluations as to the contrasted algorithms.


Constraint handling Improved Modified Harmony Search Meta-heuristic Modified Differential Evolution Reliability of Complex Systems 


  1. 1.
    Bhat, T.R., Venkataramani, D., Ravi, V., Murty, C.V.S.: An improved differential evolution method for efficient parameter estimation in biofilter modeling. Biochem. Eng. J. 28(2), 167–176 (2006)CrossRefGoogle Scholar
  2. 2.
    Chauhan, N., Ravi, V.: Differential evolution and threshold accepting hybrid algorithm for unconstrained optimisation. Int. J. Bio-Inspired Comput. 2(3/4), 169 (2010)Google Scholar
  3. 3.
    Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)CrossRefGoogle Scholar
  4. 4.
    Choudhuri, R., Ravi, V.: A hybrid harmony search and modified great deluge algorithm for unconstrained optimisation. Int. J. Comput. Intell. Res. 6(4), 755–761 (2010)Google Scholar
  5. 5.
    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of the European Conference on Artificial Life, pp. 134–142 (1991)Google Scholar
  6. 6.
    Das, S., Mukhopadhyay, A., Roy, A., Abraham, A., Panigrahi, B.K.: Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B 41(1), 89–106 (2011)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  8. 8.
    Dueck, G., Scheurer, T.: Threshold accepting: a general purpose optimization algorithm. J. Comput. Phys. 90, 161–175 (1990)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  10. 10.
    Gendreau, M., Potvin, J.Y.: Handbook of Metaheuristics. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Glover, F.: Tabu search - part II. ORSA J. Comput. 2(1), 4–32 (1989)CrossRefGoogle Scholar
  12. 12.
    Glover, F.: Tabu search - part I. ORSA J. Comput. 1(3), 190–206 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co., Boston (1989)zbMATHGoogle Scholar
  14. 14.
    Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Kluwer Academic Publishers (1995)Google Scholar
  15. 15.
    Jaya Krishna, G., Vadlamani, R., Nagesh, B.S.: Key generation for plain text in stream cipher via bi-objective evolutionary computing. Appl. Soft Comput. 70, 17 (2018)CrossRefGoogle Scholar
  16. 16.
    Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 87(5–6), 267–283 (2009)CrossRefGoogle Scholar
  17. 17.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks (ICNN 1995), Piscataway, NJ, pp. 1942–1948. IEEE (1995)Google Scholar
  18. 18.
    Kim, J.H., Lee, H.M., Jung, D., Sadollah, A.: Performance measures of metaheuristic algorithms (2016)Google Scholar
  19. 19.
    Kirkpatrick, S., Jtr, C.G., Vecchi, M.: Optimization by simulated annealing (1994)Google Scholar
  20. 20.
    Jaya Krishna, G., Ravi, V.: Modified harmony search applied to reliability optimization of complex systems. In: Kim, J., Geem, Z. (eds.) Advances in Intelligent Systems and Computing, pp. 169–180. Springer, Berlin, Heidelberg (2015)Google Scholar
  21. 21.
    Jaya Krishna, G., Ravi, V.: Outlier detection using evolutionary computing. In: Proceedings of the International Conference on Informatics and Analytics – ICIA 2016, pp. 1–6. ACM Press, New York (2016)Google Scholar
  22. 22.
    Li, H., Li, L.: A novel hybrid particle swarm optimization algorithm combined with harmony search for high dimensional optimization problems. In: The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), Jeju City, South Korea, pp. 94–97. IEEE (2007)Google Scholar
  23. 23.
    Maheshkumar, Y., Ravi, V., Abraham, A.: A particle swarm optimization-threshold accepting hybrid algorithm for unconstrained optimization. Neural Netw. World 23(3), 191–221 (2013)CrossRefGoogle Scholar
  24. 24.
    Maheshkumar, Y., Ravi, V.: A modified harmony search threshold accepting hybrid optimization algorithm. In: Sombattheera, C., et al. (eds.) Multi-disciplinary Trends in Artificial Intelligence (MIWAI), pp. 298–308. Springer, Hyderabad (2011)CrossRefGoogle Scholar
  25. 25.
    Mohan, C., Shanker, K.: Reliability optimization of complex systems using random search technique. Microelectron. Reliab. 28(4), 513–518 (1988)CrossRefGoogle Scholar
  26. 26.
    Ong, Y.S., Lim, M., Chen, X.: Memetic computation—past, present and future research frontier. IEEE Comput. Intell. Mag. 5(2), 24–31 (2010)CrossRefGoogle Scholar
  27. 27.
    Ravi, V., Reddy, P.J., Zimmermann, H.J.: Fuzzy global optimization of complex system reliability. IEEE Trans. Fuzzy Syst. 8(3), 241–248 (2000)CrossRefGoogle Scholar
  28. 28.
    Ravi, V., Murty, B.S.N., Reddy, J.: Nonequilibrium simulated-annealing algorithm applied to reliability optimization of complex systems. IEEE Trans. Reliab. 46(2), 233–239 (1997)CrossRefGoogle Scholar
  29. 29.
    Ravi, V.: Optimization of complex system reliability by a modified great deluge algorithm. Asia-Pacific J. Oper. Res. 21(04), 487–497 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sharma, N., Arun, N., Ravi, V.: An ant colony optimisation and Nelder-Mead simplex hybrid algorithm for training neural networks: an application to bankruptcy prediction in banks. Int. J. Inf. Decis. Sci. 5(2), 188 (2013)Google Scholar
  31. 31.
    Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: Ant algorithm for single and multiobjective reliability optimization problems. Qual. Reliab. Eng. Int. 18(6), 497–514 (2002)CrossRefGoogle Scholar
  32. 32.
    Srinivas, M., Rangaiah, G.P.: Differential evolution with tabu list for global optimization and its application to phase equilibrium and parameter estimation problems. Ind. Eng. Chem. Res. 46(10), 3410–3421 (2007)CrossRefGoogle Scholar
  33. 33.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tillman, F.A., Hwang, C.L., Kuo, W.: Optimization of Systems Reliability. Marcel Dekker, New York (1980)zbMATHGoogle Scholar
  35. 35.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center of Excellence in AnalyticsInstitute for Development and Research in Banking TechnologyHyderabadIndia
  2. 2.School of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations