Differential Evolution Trained Fuzzy Cognitive Map: An Application to Modeling Efficiency in Banking

  • Gutha Jaya Krishna
  • Meesala Smruthi
  • Vadlamani RaviEmail author
  • Bhamidipati Shandilya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)


In this work, we developed a Differential Evolution (DE) trained Fuzzy Cognitive Map (FCM) for predicting the bank efficiency. We developed two modes of training namely (i) sequential and (ii) batch modes. We compared the DE trained FCM models with the conventional Hebbian training in both modes. We employed Mean Absolute Percentage Error (MAPE) as an error measure while predicting the efficiency from Return on Assets (ROA), Return on Equity (ROE), Profit Margin (PM), Utilization of Assets (UA), and Expenses Ratio (ER). We employed 5x2-fold cross-validation framework. In the first case i.e. sequential mode of training, the DE trained FCM statistically outperformed the Hebbian trained FCM and in the second case i.e. batch mode of training, DE trained FCM is statistically the same as the Hebbian trained FCM. To break the tie in the batch mode, the training time is compared where DE trained FCM turned to be 19% faster than the Hebbian trained FCM. The proposed model can be applied to solving similar banking and insurance problems.


Bank efficiency prediction Financial ratios Differential Evolution Fuzzy Cognitive Map Hebbian learning 


  1. 1.
    Boutalis, Y., Kottas, T., Christodoulou, M.: Adaptive estimation of fuzzy cognitive maps with proven stability and parameter convergence. IEEE Trans. Fuzzy Syst. 17(4), 874–889 (2009)CrossRefGoogle Scholar
  2. 2.
    Boutalis, Y., Kottas, T., Christodoulou, M.: On the existence and uniqueness of solutions for the concept values in fuzzy cognitive maps. In: 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 98–104. IEEE (2008)Google Scholar
  3. 3.
    Bueno, S., Salmeron, J.L.: Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst. Appl. 36(3), 5221–5229 (2009)CrossRefGoogle Scholar
  4. 4.
    Dickerson, J.A., Kosko, B.: Virtual worlds as fuzzy cognitive maps. Presence: Teleoperators Virtual Environ. 3(2), 173–189 (1994)Google Scholar
  5. 5.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41 (1996)Google Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co., Boston (1989)zbMATHGoogle Scholar
  7. 7.
    Jayashree, L.S., Palakkal, N., Papageorgiou, E.I., Papageorgiou, K.: Application of fuzzy cognitive maps in precision agriculture: a case study on coconut yield management of southern India’s Malabar region. Neural Comput. Appl. 26(8), 1963–1978 (2015)CrossRefGoogle Scholar
  8. 8.
    Jayashree, L., Lakshmi Devi, R., Papandrianos, N., Papageorgiou, E.I.: Application of fuzzy cognitive map for geospatial dengue outbreak risk prediction of tropical regions of Southern India. Intell. Decis. Technol. 12(2), 231–250 (2018)CrossRefGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks (ICNN 1995), Piscataway, NJ, pp. 1942–1948. IEEE (1995)Google Scholar
  10. 10.
    Krishna, G.J., Ravi, V.: Evolutionary computing applied to customer relationship management: a survey. Eng. Appl. Artif. Intell. 56, 30–59 (2016)CrossRefGoogle Scholar
  11. 11.
    Krishna, G.J., Ravi, V.: Evolutionary computing applied to solve some operational issues in banks. In: Datta, S., Davim, J. (eds.) Optimization in Industry. Management and Industrial Engineering, pp. 31–53. Springer, Cham (2019)Google Scholar
  12. 12.
    Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)CrossRefGoogle Scholar
  13. 13.
    Papageorgiou, E., Markinos, A., Gemtos, T.: Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application. Appl. Soft Comput. 11(4), 3643–3657 (2011)CrossRefGoogle Scholar
  14. 14.
    Papageorgiou, E.I.: Learning algorithms for fuzzy cognitive maps: a review study. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(2), 150–163 (2012)Google Scholar
  15. 15.
    Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive maps research during the last decade. IEEE Trans. Fuzzy Syst. 21(1), 66–79 (2013)CrossRefGoogle Scholar
  16. 16.
    Parsopoulos, K.E., Papageorgiou, E.I., Groumpos, P.P., Vrahatis, M.N.: Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems. In: Deb, K. (ed.) Genetic and Evolutionary Computation Conference, pp. 402–413. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Pramodh, C., Ravi, V., Nagabhushanam, T.: Indian banks’ productivity ranking via data envelopment analysis and fuzzy multi-attribute decision-making hybrid. Int. J. Inf. Decis. Sci. 1(1), 44 (2008)Google Scholar
  18. 18.
    Robins, A.: Sequential learning in neural networks: a review and a discussion of pseudorehearsal based methods. Intell. Data Anal. 8(3), 301–322 (1997)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Stach, W., Kurgan, L., Pedrycz, W.: Data-driven nonlinear Hebbian learning method for fuzzy cognitive maps. In: IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), Hong Kong, China, pp. 1975–1981. IEEE, June 2008Google Scholar
  20. 20.
    Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153(3), 371–401 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010)Google Scholar
  23. 23.
    Dasgupta, S., Das, S., Biswas, A., Abraham, A.: On stability and convergence of the population-dynamics in differential evolution. AI Commun. 22(1), 1–20 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ali, M., Pant, M., Abraham, A.: Simplex differential evolution. Acta Polytechnica Hungarica 6(5), 95–115 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gutha Jaya Krishna
    • 1
    • 3
  • Meesala Smruthi
    • 2
  • Vadlamani Ravi
    • 3
    Email author
  • Bhamidipati Shandilya
    • 4
  1. 1.School of Computer and Information SciencesUniversity of HyderabadHyderabadIndia
  2. 2.Department of Electrical and Electronics EngineeringBirla Institute of Technology and Science PilaniHyderabadIndia
  3. 3.Center of Excellence in AnalyticsInstitute for Development and Research in Banking TechnologyHyderabadIndia
  4. 4.Institute for Development and Research in Banking TechnologyHyderabadIndia

Personalised recommendations