Advertisement

An Embedded System for Watershed Based Hard Exudate Extraction

  • Vasanthi SatyanandaEmail author
  • K. V. Narayanaswamy
  • Karibasappa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 940)

Abstract

Diabetic Retinopathy is a medical condition where the exudates deposit in front of the retina which causes blurriness in the vision. To avoid this condition, early detection of exudates becomes a necessary step. Due to the amalgamation of biomedical science, artificial intelligence and machine learning, many equipment and ideas are being used for improved diagnosis. The paper discusses about an embedded system approach for detection of exudates from the fundus images. The algorithm is developed using the concepts of markers and watershed algorithm. This algorithm has been tested in MATLAB. The hardware section of the algorithm is developed on an Artix 7 FPGA. The images have been adopted from databases such as DiaRetDB0, DiaRetDB1, IDRiD and MESSIDOR.

Keywords

Image processing MATLAB Exudates Diabetic Retinopathy FPGA Embedded system Watershed Artix7 

References

  1. 1.
    Duh, E.: Non-proliferative diabetic retionopathy. In: Diabetic Retinopathy, p. 4. Humana Press, BaltimoreGoogle Scholar
  2. 2.
    Satyananda, V., Narayanaswamy, K.V., Karibasappa: An embedded system based solution for exudate extraction. In: 2017 International Conference on Robotics, Automation and Sciences (ICORAS), Melaka, pp. 1–5 (2017)Google Scholar
  3. 3.
    Li, H., Chutatape, O.: Fundus image features extraction. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No. 00CH37143), Chicago, IL, vol. 4, pp. 3071–3073 (2000)Google Scholar
  4. 4.
    Sopharak, A., Dailey, M.N., Uyyanonvara, B., Barman, S., Williamson, T., Nwe, K.T., Moe, Y.A.: Machine learning approach to automatic exudate detection in retinal images from diabetic patients. J. Mod. Opt. 57(2), 124–135 (2010)CrossRefGoogle Scholar
  5. 5.
    Harangi, B., Antal, B., Hajdu, A.: Automatic exudate detection with improved Naïve-Bayes classifier. In: 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rome, pp. 1–4 (2012)Google Scholar
  6. 6.
    Giancardo, L., Meriaudeau, F., Karnowski, T.P., Li, Y., Tobin, K.W., Chaum, E.: Automatic retina exudates segmentation without a manually labelled training set. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, pp. 1396–1400 (2011)Google Scholar
  7. 7.
    van Grinsven, M.J.J.P., Chakravarty, A., Sivaswamy, J., Theelen, T., van Ginneken, B., Sánchez, C.I.: A Bag of Words approach for discriminating between retinal images containing exudates or drusen. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, pp. 1444–1447 (2013)Google Scholar
  8. 8.
    Satyananda, V., Narayanaswamy, K.V., Karibasappa, K.: Extraction of exudates from the fundus images a review. Int. J. Eng. Res. Technol. 5, 133–138 (2016)Google Scholar
  9. 9.
    Mahendran, G., Dhanasekaran, R., Narmadha Devi, K.N.: Morphological process based segmentation for the detection of exudates from the retinal images of diabetic patients. In: 2014 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 1466–1470, 8–10 May 2014Google Scholar
  10. 10.
    Ravivarma, P., Ramasubramanian, B., Arunmani, G., Babumohan, B.: An efficient system for the detection of exudates in color fundus images using image processing technique. In: 2014 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 1551–1553, 8–10 May 2014Google Scholar
  11. 11.
    Fang, G., Yang, N., Lu, H., Li, K.: Automatic segmentation of hard exudates in fundus images based on boosted soft segmentation. In: 2010 International Conference on Intelligent Control and Information Processing (ICICIP), pp. 633–638, 13–15 August 2010Google Scholar
  12. 12.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Uusitalo, H., Kälviäinen, H., Pietilä, J.: DIARETDB0: evaluation database and methodology for diabetic retinopathy algorithms, Technical reportGoogle Scholar
  13. 13.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen A., Voutilainen R., Uusitalo, H., Kälviäinen, H., Pietilä, J.: DIARETDB1 diabetic retinopathy database and evaluation protocol, Technical reportGoogle Scholar
  14. 14.
    Reza, W., Eswaran, C., Hati, S.: Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds. J. Med. Syst. 33, 73–80 (2008)CrossRefGoogle Scholar
  15. 15.
    Dua, S., Acharya, R.U., Ng, E.Y.K.: Computational methods in feature detection in optical images. In: Computational Analysis of the Human Eye with Applications, p. 42. World Scientific Publishing, Singapore (2011)Google Scholar
  16. 16.
    Saini, S., Arora. K.C.: A study analysis on the different image segmentation techniques (2014)Google Scholar
  17. 17.
    Qin, Y., Wang, W., Liu, W., Yuan, N.: Extended-maxima transform watershed segmentation algorithm for touching Corn kernels. Adv. Mech. Eng. 5, 268046 (2013)CrossRefGoogle Scholar
  18. 18.
    Rupanagudi, S.R., et al.: A novel video processing based smart helmet for rear vehicle intimation & collision avoidance. In: 2015 International Conference on Computing and Network Communications (CoCoNet), Trivandrum, pp. 799–805 (2015)Google Scholar
  19. 19.
    Rupanagudi, S.R., et al.: A high speed algorithm for identifying hand gestures for an ATM input system for the blind. In: 2015 IEEE Bombay Section Symposium (IBSS), Mumbai, pp. 1–6 (2015)Google Scholar
  20. 20.
    Chen, S., Li, J., Wang, X.: A fast exact Euclidean distance transform algorithm. In: 2011 Sixth International Conference on Image and Graphics, Hefei, Anhui, pp. 45–49 (2011)Google Scholar
  21. 21.
    He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y.: The connected-component labeling problem: a review of state-of-the-art algorithms. Pattern Recognit. 70, 25–43 (2017)CrossRefGoogle Scholar
  22. 22.
    Kumar, D., Saha, P., Dandapat, A.: Hardware implementation of methodologies of fixed point division algorithms. Int. J. Smart Sens. Intell. Syst. 10, 630–645 (2017).  https://doi.org/10.21307/ijssis-2017-227CrossRefGoogle Scholar
  23. 23.
    Rupanagudi, S.R., Bhat, V.G., Savarni, K.R.V.R., Bharadwaj, S., Prasuna, V.N.P.: A novel automatic low cost cutting machine-cum-3D printer using an image processing based control. In: 2015 IEEE Bombay Section Symposium (IBSS), Mumbai, pp. 1–6 (2015)Google Scholar
  24. 24.
    7 Series FPGAs - Configurable Logic Block, UG474 (v1.8), 27 September 2016Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vasanthi Satyananda
    • 1
    Email author
  • K. V. Narayanaswamy
    • 2
  • Karibasappa
    • 3
  1. 1.Department of ECE, Atria Institute of TechnologyVTUBangaloreIndia
  2. 2.Atria Institute of TechnologyBangaloreIndia
  3. 3.Dayanand Sagar UniversityBangaloreIndia

Personalised recommendations