Advertisement

Design of Low Power SAR ADC with Two Different DAC Structure and Two Different SAR Logic Designs and Their Comparisons

  • Aruna Kumari ChirapangiEmail author
  • G. M. G. Madhuri
  • Praveen Kitti Burri
  • Naga Lakshmi Kalyani MovvaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 940)

Abstract

Successive-approximation analog-to-digital converters (SA-ADCs) are widely used in ultra-low-power applications. In this paper the power consumption and linearity of SAR ADC are analyzed by using different DAC structures and different SAR Logics. Three types of DAC structures i.e. Capacitive DAC, R-2R resistive DAC, and a CMOS R-2R ladder DAC is employed. Coming to SAR logic, sequential/code register and non-redundant SAR logics are used. Among the all, the CMOS R-2R ladder DAC and non-redundant SAR logic structured SA-ADC is efficient and provides optimum results for all circuit design aspects i.e. power, speed, and area. Along above all designs a dynamic two-stage comparator and the D flip-flops with transmission gates are used due to their energy efficiency and capability of working in low supply voltages.

Keywords

Sequential/code register SAR logic Non-redundant SAR logic CMOS R-2R (DAC) Transmission gate D-flip-flop Comparator INL DNL 

References

  1. 1.
    Wong, L.S., Hossain, S., Ta, A., Edvinsson, J., Rivas, D.H., Naas, H.: A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuits 39(12), 2446–2456 (2004)CrossRefGoogle Scholar
  2. 2.
    Shahrokhi, F., Abdelhalim, K., Serletis, D., Carlen, P.L., Genov, R.: The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149–161 (2010)CrossRefGoogle Scholar
  3. 3.
    Kim, S., Lee, S.J., Cho, N.: A fully integrated digital hearing aid chip with human factors considerations. IEEE J. Solid-State Circuits 43(1), 266–274 (2008)CrossRefGoogle Scholar
  4. 4.
    Yangjin, O., Murmann, B.: System embedded ADC calibration for OFDM receivers. IEEE Trans. Circuits Syst. I 53(8), 1693–1703 (2006)CrossRefGoogle Scholar
  5. 5.
    Scott, M.D., Boser, B.E., Pister, K.S.: An ultralow-energy ADC for smart dust. IEEE J. Solid-State Circuits 38(7), 1123–1129 (2003)CrossRefGoogle Scholar
  6. 6.
    Verma, N., Chandrakasan, A.P.: An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J. Solid-State Circuits 42(6), 1196–1205 (2007)CrossRefGoogle Scholar
  7. 7.
    Gambini, S., Rabaey, J.: Low-power successive approximation converter with 0.5 V supply in 90 nm CMOS. IEEE J. Solid-State Circuits 42(11), 2348–2356 (2007)CrossRefGoogle Scholar
  8. 8.
    Sauerbrey, J., Schmitt-Landsiedel, D., Thewes, R.: A 0.5-V 1-/spl mu/W successive approximation ADC. IEEE J. Solid-State Circuits 38(7), 1261–1265 (2003)Google Scholar
  9. 9.
    Suarez, E., Gray, P.R., Hodges, D.A.: All-MOS charge redistribution analog-to-digital conversion techniques—Part I. IEEE J. Solid-State Circuits 10(6), 371–379 (1975)CrossRefGoogle Scholar
  10. 10.
    Hong, H., Lee, G.: A 65-fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC. IEEE J. Solid-State Circuits 42(10), 2161–2168 (2007)Google Scholar
  11. 11.
    Singh, R.R., et al.: Multi-step binary-weighted capacitive digital-toanalog converter architecture. In: Proceedings of IEEE MWSCAS, pp. 470–473, August 2008Google Scholar
  12. 12.
    Baker, R.J.: CMOS Circuit Design, Layout, and Simulation, 2nd edn. Wiley, New York (2004)Google Scholar
  13. 13.
    Culurciello, E., Andreou, A.G.: An 8-bit 800-$ muhboxW $1.23-MS/s successive approximation ADC in SOI CMOS. IEEE Trans. Circuits Syst. II: Exp. Briefs 53(9), 858–861 (2006)Google Scholar
  14. 14.
    Zhu, Y., Chan, C.H., Chio, U.F., Sin, S.W., Seng-Pan, U., Martins, R.P., Maloberti, F.: A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J. Solid-State Circuits 45(6), 1111–1121 (2010)Google Scholar
  15. 15.
    Zhu, Y., Chio, U., Wei, H., Sin, S., Seng-Pan, U., Martins, R.P.: A power-efficient capacitor structure for high-speed charge recycling SAR ADCs. In: Proceedings of IEEE ICECS, pp. 642–645, September 2008Google Scholar
  16. 16.
    Ginsburg, B.P., Chandrakasan, A.P.: 500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC. IEEE J. Solid-State Circuits 42(4), 739–747 (2007)CrossRefGoogle Scholar
  17. 17.
    Ginsburg, B.P., Chandrakasan, A.P.: An energy-efficient charge recycling approach for a SAR converter with capacitive DAC. In: Proceedings of IEEE ISCAS, pp. 184–187, May 2005Google Scholar
  18. 18.
    Choi, R.Y.-K., Tsui, C.-Y.: A low energy two-step successive approximation algorithm for ADC design. In: Proceedings of IEEE ISQED, pp. 317–320, March 2008Google Scholar
  19. 19.
    Liew, W.S., et al.: A 1-V 60-μW 16-channel interface chip for implantable neural recording. In: Proceedings of IEEE CICC, pp. 507–510, September 2009Google Scholar
  20. 20.
    Cong, L.: Pseudo C-2C ladder-based data converter technique. IEEE Trans. Circuits Syst. II 48(10), 927–929 (2001)CrossRefGoogle Scholar
  21. 21.
    Lee, S.-W., Chung, H.-J., Han, C.-H.: C-2C digital-to-analogue converter on insulator. Electron. Lett. 35(15), 1242–1243 (1999)CrossRefGoogle Scholar
  22. 22.
    Kim, H., Min, Y., Kim, Y., Kim, S.: A low power consumption 10-bit rail-to-rail SAR ADC using a C-2C capacitor array. In: Proceedings of IEEE EDSSC, pp. 1–4, December 2008Google Scholar
  23. 23.
    Xiong, W., Yang, G., Murmann, B., Zschieschang, U., Klauk, H.: A3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass. In: Proceedings of IEEE ESSDERC, pp. 229–232, September 2009Google Scholar
  24. 24.
    Lee, J.S., Park, I.C.: Capacitor array structure and switch control for energy-efficient SAR analog-to-digital converters. In: Proceedings of IEEE ISCAS, pp. 236–239, May 2008Google Scholar
  25. 25.
    Zhu, Y., et al.: Linearity analysis on a series-split capacitor array for high-speed SAR ADCs. In: Proceedings of IEEE MWSCAS, pp. 922–925, August 2008Google Scholar
  26. 26.
    Kuttner, F.: A 1.2 V 10b 20 MSample/s non-binary successive approximation ADC in 0.13 μm CMOS. In: Proceedings of IEEE ISSCC, pp. 176–177 (2002)Google Scholar
  27. 27.
    Gan, J., Abraham, J.: Mixed-signal micro-controller for non-binary capacitor array calibration in data converter. In: Proceeding of IEEE Signals, Systems and Computers Conference, vol. 2, pp. 1046–1049, November 2002Google Scholar
  28. 28.
    Gan, J., Abraham, J.: A non-binary capacitor array calibration circuit with 22-bit accuracy in successive approximation analog-to-digital converters. In: Proceedings of IEEE MWSCAS, vol. 1, pp. 301–304, August 2002Google Scholar
  29. 29.
    Suarez, R.E., Gray, P.R., Hodges, D.A.: All-MOS charge-redistribution analog-to-digital conversion techniques—Part II. IEEE J. Solid-State Circuits SC-10(6), 379–385 (1975)CrossRefGoogle Scholar
  30. 30.
    Craninckx, J., Plas, G.V.: A 65fJ/conversion-step 0-to-50 MS/s 0-to-0.7 mW 9b charge-sharing SAR ADC in 90 nm digital CMOS. In: Proceedings of IEEE ISSCC Digest of Technical Papers, pp. 246–600, February 2007Google Scholar
  31. 31.
    Le, H.P., Singh, J., Hiremath, L., Mallapur, V., Stojcevski, A.: Ultra-low-power variable-resolution successive approximation ADC for biomedical application. Electron. Lett. 41(11), 634–635 (2005)CrossRefGoogle Scholar
  32. 32.
    Robert, P.Y., Gosselin, B., Ayoub, A.E., Sawan, M.: An ultra-low-power successive-approximation-based ADC for implantable sensing devices. In: Proceedings of IEEE MWSCAS, vol. 1, pp. 7–11, August 2006Google Scholar
  33. 33.
    Saul, P.H.: Successive approximation analog-to-digital conversion at video rates. IEEE J. Solid-State Circuits sc-16(3), 147–151 (1981)CrossRefGoogle Scholar
  34. 34.
    Yang, Z., der Spiegel, J.V.: A 10-bit 8.3 MS/s switch-current successive approximation ADC for column-parallel imagers. In: Proceedings of IEEE ISCAS, pp. 224–227, May 2008Google Scholar
  35. 35.
    Dlugosz, R., Iniewski, K.: Ultra low power current-mode algorithmic analog-to-digital converter implemented in 0.18 μm CMOS technology for wireless sensor network. In: Proceedings of IEEE MIXDES, pp. 401–406, June 2006Google Scholar
  36. 36.
    Mortezapour, S., Lee, E.K.: A 1-V, 8-bit successive approximation ADC in standard CMOS process. IEEE J. Solid-State Circuits 35(4), 642–646 (2000)CrossRefGoogle Scholar
  37. 37.
    Hammerschmied, C.M., Huang, Q.: Design and implementation of an untrimmed MOSFET-only 10-bit A/D converter with 79-dB THD. IEEE J. Solid-State Circuits 33(8), 1148–1157 (1998)CrossRefGoogle Scholar
  38. 38.
    Lin, C.S., Liu, B.D.: A new successive approximation architecture for low-power low-cost CMOS A/D converter. IEEE J. Solid-State Circuits 38(1), 54–62 (2003)CrossRefGoogle Scholar
  39. 39.
    Fayomi, C.J.B., Roberts, G.W., Sawan, M.: A 1-V, 10-bit rail-torail successive approximation analog-to-digital converter in standard 0.18 μm CMOS technology. In: Proceedings of IEEE ISCAS, pp. 460–463, May 2001Google Scholar
  40. 40.
    Shyu, J.B., Temes, G.C., Yao, K.: Random errors in MOS capacitors. IEEE J. Solid-State Circuits 17(6), 1070–1076 (1982)CrossRefGoogle Scholar
  41. 41.
    Fayomi, C.J.-B., Roberts, G.W., Sawan, M.: Low-voltage CMOS analog switch for high precision sample-and-hold circuit. In: 43rd Midwest Symposium on Circuits and Systems, East Lansing, August 2000Google Scholar
  42. 42.
    Samavati, H., et al.: Fractal capacitors. IEEE J. Solid-State Circuits 33(12), 2035–2041 (1998)CrossRefGoogle Scholar
  43. 43.
    Kazeminia, S., Hesamiafshar, Y., Hadidi, K., Khoei, A.: On matching properties of R-2R ladders in high performance digital-to-analog converters. In: 2010 18th Iranian Conference on Electrical Engineering (ICEE), pp. 432–436, May 2010Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aruna Kumari Chirapangi
    • 1
    Email author
  • G. M. G. Madhuri
    • 1
  • Praveen Kitti Burri
    • 1
  • Naga Lakshmi Kalyani Movva
    • 1
    Email author
  1. 1.Potti Sri Ramulu Chalavadi Mallikarjuna Rao College of Engineering and TechnologyVijayawadaIndia

Personalised recommendations