Advertisement

Real-Time PCG Diagnosis Using FPGA

  • Mohammed Abdulraheem FadhelEmail author
  • Omran Al-Shamma
  • Sameer Razzaq Oleiwi
  • Bahaa Hussein Taher
  • Laith Alzubaidi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 940)

Abstract

Phono-Cardio-Gram (PCG) is an effective technique of detecting various heart abnormalities and malfunctions. Several PCG segmentation algorithms, each with its advantages and disadvantages, have been developed and tested. Unfortunately, most of these algorithms fail to diagnose heart conditions in real time. This paper introduces a real-time methodology by utilizing the field programmable gate array (FPGA) hardware to speed up the processing time very successfully. The type of FPGA hardware is Altera DE2 Cyclone II board with NIOS II soft processor. The algorithm of discrete wavelet transforms (DWT) with Shannon energy and spectra signal are used to extract the PCG features. The algorithm is also applied to identify the normal heart condition and nine abnormal cases. The results show that the methodology worked extremely efficient and suitable for real-time heart diagnosis purposes.

Keywords

PCG Real-time heart diagnosis DWT Heart signal processing Shannon energy 

References

  1. 1.
    Goda, M.A., Hajas, P.: Morphological determination of pathological PCG signals by time and frequency domain analysis. In: 2016 Computing in Cardiology Conference (CinC). IEEE (2016)Google Scholar
  2. 2.
    Mukherjeea, A., Khanb, A.: A fourier series based template matching approach to detect the splitting of second heart sound. IOSR J. VLSI Signal Process. (IOSR-JVSP) 4, 09–13 (2014)CrossRefGoogle Scholar
  3. 3.
    Clifford, G.D., et al.: Classification of normal/abnormal heart sound recordings: the PhysioNet/computing in cardiology challenge 2016. In: 2016 Computing in Cardiology Conference (CinC). IEEE (2016)Google Scholar
  4. 4.
    Liu, C., et al.: An open access database for the evaluation of heart sound algorithms. Physiol. Measur. 37(12), 2181 (2016)CrossRefGoogle Scholar
  5. 5.
    Schmidt, S., Graebe, M., Toft, E., Struijk, J.: No evidence of nonlinear or chaotic behavior of cardiovascular murmurs. Biomed. Signal Process. Control 6, 157–163 (2011)CrossRefGoogle Scholar
  6. 6.
    Ari, S., Hembram, K., Saha, G.: Detection of cardiac abnormality from PCG signal using LMS based least square SVM classier. Expert Syst. Appl. 37, 8019–8026 (2010)CrossRefGoogle Scholar
  7. 7.
    Wang, P., Lim, C.S., Chauhan, S., Foo, J.Y., Anantharaman, V.: Phonocardiographic signal analysis method using a modified hidden Markov model. Ann. Biomed. Eng. 35, 367–374 (2007)CrossRefGoogle Scholar
  8. 8.
    Saracoglu, R.: Hidden Markov model-based classification of heart valve disease with PCA for dimension reduction. Eng. Appl. Artif. Intell. 25, 1523–1528 (2012)CrossRefGoogle Scholar
  9. 9.
    Quiceno-Manrique, A.F., Godino-Llorente, J.I., Blanco-Velasco, M., Castellanos-Dominguez, G.: Selection of dynamic features based on time-frequency representations for heart murmur detection from phonocardiographic signals. Ann. Biomed. Eng. 38, 118–137 (2010)CrossRefGoogle Scholar
  10. 10.
    El-Segaier, M., et al.: Detection of cardiac pathology: time intervals and spectral analysis. Acta Paediatr. 96(7), 1036–1042 (2007)CrossRefGoogle Scholar
  11. 11.
    Schmidt, S.E., et al.: Acoustic features for the identification of coronary artery disease. IEEE Trans. Biomed. Eng. 62(11), 2611–2619 (2015)CrossRefGoogle Scholar
  12. 12.
    Leng, S., et al.: The electronic stethoscope. Biomed. Eng. Online 14(1), 66 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yuenyong, S., et al.: A framework for automatic heart sound analysis without segmentation. Biomed. Eng. Online 10(1), 13 (2011)CrossRefGoogle Scholar
  14. 14.
    Choi, S., Jiang, Z.: Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst. Appl. 34(2), 1056–1069 (2008)CrossRefGoogle Scholar
  15. 15.
    Karar, M.E., El-Brawany, M.: Embedded heart sounds and murmurs generator based on discrete wavelet transform. In: 2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC). IEEE (2016)Google Scholar
  16. 16.
    Randhawa, S.K., Singh, M.: Classification of heart sound signals using multi-modal features. Procedia Comput. Sci. 58, 165–171 (2015)CrossRefGoogle Scholar
  17. 17.
    Altera: DE2. Development and education board user manual. Terasic Technologies (2012)Google Scholar
  18. 18.
    Moslehpour, S., et al.: Design of the Nios II system for the playing of wave files on an Altera DE2 Board. Int. J. Eng. Technol. 5(3), 361 (2013)CrossRefGoogle Scholar
  19. 19.
    Mondal, A., Bhattacharya, P., Saha, G.: An automated tool for localization of heart sound components S1, S2, S3 and S4 in pulmonary sounds using Hilbert transform and Heron’s formula. SpringerPlus 2(1), 512 (2013)CrossRefGoogle Scholar
  20. 20.
    Choudhary, T., Sharma, L.N., Bhuyan, M.K.: Heart sound extraction from sternal seismocardiographic signal. IEEE Signal Process. Lett. 25(4), 482–486 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammed Abdulraheem Fadhel
    • 1
    Email author
  • Omran Al-Shamma
    • 1
  • Sameer Razzaq Oleiwi
    • 2
  • Bahaa Hussein Taher
    • 3
  • Laith Alzubaidi
    • 1
    • 4
  1. 1.University of Information Technology and CommunicationsBaghdadIraq
  2. 2.Muthanna UniversityMuthannaIraq
  3. 3.University of SumerDhi QarIraq
  4. 4.Faculty of Science and EngineeringQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations