Advertisement

Directional Multiscale Feature Extraction for Biomedical Image Indexing and Retrieval Using Contourlet Transform

  • Amita A. ShindeEmail author
  • Amol D. Rahulkar
  • Chetankumar Y. Patil
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 940)

Abstract

Multiscale and multidirectional are desirable properties for image decomposition. This paper presents directional multiscale feature extraction for biomedical image indexing and retrieval using contourlet transform. The contourlet transform decomposed image at multiscale in directional sub-bands. The feature vector of each contourlet sub-band is calculated by computing the directional energies of the extracted coefficients of respective sub-band. The final feature vector is constructed by concatenating feature vectors of all contourlet sub-bands. The similarity between query feature vector and feature vector of database is calculated using Manhattan distance. The feature extraction time and feature vector length are reduced significantly using proposed method. The effectiveness of the proposed method is evaluated by conducting the experiments on two well-known biomedical databases: Open access series of imaging studies (OASIS) MRI and NEMA-CT. The average retrieval precision (ARP) and average retrieval rate (ARR) are used to measure the performance of the proposed method. The experimental results show that the proposed method outperforms well-known existing methods.

Keywords

Biomedical image retrieval Contourlet transform Feature extraction Multiscale Multidirectional 

References

  1. 1.
    Cai, W., Kim, J., Feng, D.D.: Content based medical image retrieval. In: Biomedical Information Technology, pp. 83–113. Elsevier (2008)Google Scholar
  2. 2.
    Kumar, A., Kim, J., Cai, W., Fulham, M., Feng, D.: Content based medical image retrieval: a survey of applications to multidimensional and multimodality data. J. Digit. Imaging 26, 1025–1039 (2013)CrossRefGoogle Scholar
  3. 3.
    Unay, D., Ekin, A., Jasinschi, R.: Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Inf. Tech. Biomed. 14(4), 897–903 (2009)CrossRefGoogle Scholar
  4. 4.
    Iakovidis, D.K., Pelekis, N., Kotsifakos, E.E., Kopanakis, I., Karanikas, H., Theodoridis, Y.: A pattern similarity scheme for medical image retrieval. IEEE Trans. Inf. Tech. Biomed. 13(4), 442–450 (2009)CrossRefGoogle Scholar
  5. 5.
    Yang, L., Jin, R., Mummert, L., Sukthankar, R., Goode, A., Zheng, B., Hoi, S.C.H., Satyanarayanan, M.: A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 30–44 (2010)CrossRefGoogle Scholar
  6. 6.
    Xu, X., Lee, D.J., Antani, S., Long, L.R.: A spine X-Ray image retrieval system using partial shape matching. IEEE Trans. Inf. Tech. Biomed. 12(1), 100–108 (2008)CrossRefGoogle Scholar
  7. 7.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  8. 8.
    Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Murala, S., Wu, Q.M.J.: Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119, 399–412 (2013)CrossRefGoogle Scholar
  10. 10.
    Murala, S., Wu, Q.M.J.: Peak valley edge patterns: a new descriptor for biomedical image indexing and retrieval. In: CVPR, pp. 444–449 (2013)Google Scholar
  11. 11.
    Murala, S., Wu, Q.M.J.: Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J. Biomed. Health Inform. 18(3), 929–938 (2014)CrossRefGoogle Scholar
  12. 12.
    Dubey, S.R., Singh, S.K., Singh, R.K.: Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process. Lett. 22(9), 1215–1219 (2015)CrossRefGoogle Scholar
  13. 13.
    Dubey, S.R., Singh, S.K., Singh, R.K.: Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval. IEEE J. Biomed. Health Inform. 20(4), 1139–1147 (2016)CrossRefGoogle Scholar
  14. 14.
    Deep, G., Kaur, L., Gupta, S.: Directional local ternary quantized extrema pattern: a new descriptor for biomedical image indexing and retrieval. Eng. Sci. Technol. Int. J. 19(4), 1895–1909 (2016)CrossRefGoogle Scholar
  15. 15.
    Shinde, A.A., Rahulkar, A.D., Patil, C.Y.: Local neighboring binary pattern: a new feature descriptor for biomedical image indexing and retrieval. IEEE ICSIP (2017).  https://doi.org/10.1109/SIPROCESS.2017.8124524CrossRefGoogle Scholar
  16. 16.
    Murala, S., Maheshwari, R.P., Balasubramanian, R.: Directional binary wavelet patterns for biomedical image indexing and retrieval. J. Med. Syst. 36(5), 2865–2879 (2012)CrossRefGoogle Scholar
  17. 17.
    Swanson, M.D., Tewfik, A.H.: A binary wavelet decomposition of binary images. IEEE Trans. Image Process. 5(12), 1637–1650 (1996)CrossRefGoogle Scholar
  18. 18.
    Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C.: Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans. Image Process. 21(4), 1613–1623 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C.: Wavelet optimization for content-based image retrieval in medical databases. Med. Image Anal. 14(2), 227–241 (2010)CrossRefGoogle Scholar
  20. 20.
    Dubey, S.R., Singh, S.K., Singh, R.K.: Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE Trans. Image Process. 24(12), 5892–5903 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shinde, A.A., Rahulkar, A.D., Patil, C.Y.: Fast discrete curvelet transform-based anisotropic feature extraction for biomedical image indexing and retrieval. Int. J. Multimed. Inf. Retrieval 6(4), 281–288 (2017).  https://doi.org/10.1007/s13735-017-0132-0CrossRefGoogle Scholar
  22. 22.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)CrossRefGoogle Scholar
  23. 23.
    Po, D.Y., Do, M.N.: Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Image Process. 15(6), 1610–1620 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rouhafzay, A., Baaziz, N., Diop, M.: Contourlet versus Gabor transform for texture feature extraction and image retrieval. In: IEEE 12th International Conference on Signal-Image Technology & Internet Based Systems (2016).  https://doi.org/10.1109/sitis.2016.63
  25. 25.
    Kumar, T.G.S., Nagarajan, V.: Combining LBP and contourlet features for image retrieval. In: IEEE International Conference on Communication and Signal Processing (2016)Google Scholar
  26. 26.
    Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)CrossRefGoogle Scholar
  27. 27.
    Bamberger, R.H., Smith, M.J.T.: A filter bank for the directional decomposition of images: theory and design. IEEE Trans. Signal Process. 40(4), 882–893 (1992)CrossRefGoogle Scholar
  28. 28.
    OASIS-MRI image database. http://www.oasis-brains.org/
  29. 29.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.College of Engineering PunePuneIndia
  2. 2.National Institute of Technology GoaPondaIndia

Personalised recommendations