Extending Borda Rule Under q-rung Orthopair Fuzzy Set for Multi-attribute Group Decision-Making

  • R. KrishankumarEmail author
  • S. Shyam
  • R. P. Nethra
  • S. Srivatsa
  • K. S. Ravichandran
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 940)


With a view of generalizing intuitionistic fuzzy set (IFS), q-rung orthopair fuzzy set (q-ROFS) was developed. The q-ROFS mitigates the limitation of IFS in terms of data representation and provides a more flexible environment for decision makers (DMs) to easily express their preference and non-preference values. Motivated by the power of q-ROFS, in this paper efforts are made to propose q-rung orthopair fuzzy preference relations (q-ROFPRs). Further, a new operator called simple q-rung orthopair fuzzy weighted geometry (Sq-ROFWG) is proposed for aggregating preferences. Then, we extend the popular Borda rule to q-ROFPR for sensible ranking of alternatives. Also, the Borda rule is investigated from both broad and narrow context. The practicality and usefulness of the proposed method is demonstrated by using a cloud vendor (CV) selection example. Finally, the strength and weakness of the proposal is discussed.


Borda rule Cloud vendor selection Group decision-making q-rung orthopair fuzzy set 



Author(s) are thankful to University Grants Commission (UGC) India (F./2015-17/RGNF-2015-17-TAM-83) and Department of Science & Technology (DST) India (SR/FST/ETI-349/2013) for their financial support.


  1. 1.
    Triantaphyllou, E., Shu, B.: Multi-criteria decision making: an operations research approach. Encycl. Electr. Electron. Eng. 15, 175–186 (1998)Google Scholar
  2. 2.
    Yager, R.R.: Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2017)CrossRefGoogle Scholar
  3. 3.
    Alajlan, N.: Approximate reasoning with generalized orthopair fuzzy sets. Inf. Fusion 38, 65–73 (2017)CrossRefGoogle Scholar
  4. 4.
    Wei, G., Gao, H., Wei, Y.: Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 33(7), 1426–1458 (2018)CrossRefGoogle Scholar
  5. 5.
    Liu, Z., Liu, P., Liang, X.: Multiple attribute decision-making method for dealing with heterogeneous relationship among attributes and unknown attribute weight information under q-rung orthopair fuzzy environment. Int. J. Intell. Syst. 33(9), 1900–1928 (2018)CrossRefGoogle Scholar
  6. 6.
    Liu, P., Liu, J.: Some q-rung orthopai fuzzy Bonferroni mean operators and their application to multi-attribute group decision making. Int. J. Intell. Syst. 33(2), 315–347 (2018)CrossRefGoogle Scholar
  7. 7.
    Rodríguez, R.M., Martínez, L., Torra, V., Xu, Z., Herrera, F.: Hesitant fuzzy sets: State of the art and future directions. Int. J. Intell. Syst. 29(2), 495–524 (2014)CrossRefGoogle Scholar
  8. 8.
    Du, W.S.: Minkowski-type distance measures for generalized orthopair fuzzy sets. Int. J. Intell. Syst. 33(4), 802–817 (2018)CrossRefGoogle Scholar
  9. 9.
    Li, L., Zhang, R., Wang, J., Shang, X., Bai, K.: A novel approach to multi-attribute group decision-making with q-rung picture linguistic information. Symmetry 10(5), 1–12 (2018)Google Scholar
  10. 10.
    Garcia-lapresta, J.L., Martinez-panero, M.: Borda count versus approval voting: a fuzzy approach. Public Choice 112(1), 167–184 (2018)Google Scholar
  11. 11.
    Ren, H.P., Chen, H.H., Fei, W., Li, D.F.: A MAGDM method considering the amount and reliability information of interval-valued intuitionistic fuzzy sets. Int. J. Fuzzy Syst. 19(3), 715–725 (2017)CrossRefGoogle Scholar
  12. 12.
    Khalid, A., Beg, I.: Incomplete hesitant fuzzy preference relations in group decision making. Int. J. Fuzzy Syst. 19(3), 637–645 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    García-Lapresta, J.L., Martínez-Panero, M., Meneses, L.C.: Defining the Borda count in a linguistic decision making context. Inf. Sci. 179(14), 2309–2316 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liao, H., Xu, Z., Xia, M.: Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation. J. Intell. Fuzzy Syst. 27(6), 2969–2985 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Liao, H., Xu, Z.: Some algorithms for group decision making with intuitionistic fuzzy preference information. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 22(4), 505–529 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liao, H., Xu, Z., Zeng, X.J., Merigo, J.M.: Framework of group decision making with intuitionistic fuzzy preference information. IEEE Trans. Fuzzy Syst. 23(4), 1211–1227 (2015)CrossRefGoogle Scholar
  17. 17.
    Liao, H., Xu, Z.: Consistency of the fused intuitionistic fuzzy preference relation in group intuitionistic fuzzy analytic hierarchy process. Appl. Soft Comput. 35, 812–826 (2015)CrossRefGoogle Scholar
  18. 18.
    Xu, Z., Liao, H.: A survey of approaches to decision making with intuitionistic fuzzy preference relations. Knowl. Based Syst. 80(1), 131–142 (2015)CrossRefGoogle Scholar
  19. 19.
    Liu, P., Chen, S., Wang, P.: Multiple-attribute group decision-making based on q-rung orthopair fuzzy power Maclaurin symmetric mean operators, 1–16 (2018).
  20. 20.
    Mi, X., Liao, H.: Hesitant fuzzy linguistic group decision making with Borda rule. In: International Conference on Group Decision and Negotiation 2018. LNBIP, vol. 315, pp. 1–12 Springer, Heidelberg (2018)Google Scholar
  21. 21.
    Liu, S., Chan, F.T.S., Ran, W.: Decision making for the selection of cloud vendor: an improved approach under group decision-making with integrated weights and objective/subjective attributes. Expert Syst. Appl. 55, 37–47 (2016)CrossRefGoogle Scholar
  22. 22.
    Lima Junior, F.R., Osiro, L., Carpinetti, L.C.R.: A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 21(8), 194–209 (2014)CrossRefGoogle Scholar
  23. 23.
    Zou, K.: Borda method of fuzzy decision making. In: International Conference on Computer Science and Electronics Engineering, vol. 3, pp. 403–405. IEEE (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. Krishankumar
    • 1
    Email author
  • S. Shyam
    • 1
  • R. P. Nethra
    • 1
  • S. Srivatsa
    • 1
  • K. S. Ravichandran
    • 1
  1. 1.School of ComputingSASTRA UniversityThanjavurIndia

Personalised recommendations