Micro-CT in Comparison with Histology in the Qualitative Assessment of Bone and Pathologies

  • Umut AksoyEmail author
  • Hanife Özkayalar
  • Kaan Orhan


Bone tissue along with cartilage, fibrous tissue, fat, blood vessels, nerves, and hematopoietic elements forms individual bones. Bone is highly mineralized and multifunctional tissue, which plays roles in mechanical support and protection, mineral homeostasis, and hematopoiesis. In recent years, it has become clear that bone also serves an essential endocrine function. To achieve these functional goals, bone is organized hierarchically, from nanometer- to millimeter-sized structures. This contributes not only to its mechanical role in support and movement of the body but also to its other functions. At the nanostructural level, bone is composed of organic and mineral components, mainly consisting of a matrix of cross-linked type I collagen mineralized with nanocrystalline, carbonated apatite. Due to its high mineral content, bone tissue is extremely resilient, but its organic part also provides a certain degree of flexibility and elasticity improving its behavior under mechanical forces.



The specimen in this study were scanned and reconstructed with Skyscan 1275 (Skyscan, Kontich, Belgium) in Ankara University, Faculty of Dentistry, Micro CT Laboratory which was founded by Ankara University Research Fund (Project No: 17A0234001).


  1. 1.
    Allen MR, Burr DB. Techniques in histomorphometry. In: Basic and applied bone biology; 2014. p. 131–48.CrossRefGoogle Scholar
  2. 2.
    Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131–9.CrossRefGoogle Scholar
  3. 3.
    An YH, Martin KL. Handbook of histology methods for bone and cartilage. Totowa, NJ: Humana Press; 2003.CrossRefGoogle Scholar
  4. 4.
    Eltoum I, Fredenburgh J, Myers RB, Grizzle WE. Introduction to the theory and practice of fixation of tissues. J Histotechnol. 2001;24:173–90.CrossRefGoogle Scholar
  5. 5.
    Jones ML. To fix, to harden, to preserve—fixation: a brief history. J Histotechnol. 2001;24:155–62.CrossRefGoogle Scholar
  6. 6.
    Fox CH, Johnson FB, Whiting J, Roller PP. Formaldehyde fixation. J Histochem Cytochem. 1985;33(8):845–53.CrossRefGoogle Scholar
  7. 7.
    Frost HM. Preparation of thin undecalcified bone sections by rapid manual method. Stain Technol. 1958;33:273–7.CrossRefGoogle Scholar
  8. 8.
    Schaffler MB, Radin EL, Burr DB. Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone. 1989;10:207–14.CrossRefGoogle Scholar
  9. 9.
    Burr DB, Martin RB. Calculating the probability that microcracks initiate resorption spaces. J Biomech. 1993;26:613–6.CrossRefGoogle Scholar
  10. 10.
    Lee TC, Myers ER, Hayes WC. Fluorescence-aided detection of microdamage in compact bone. J Anat. 1998;193:179–84.CrossRefGoogle Scholar
  11. 11.
    O’Brien FJ, Taylor D, Lee TC. An improved labelling technique for monitoring microcrack growth in the compact bone. J Biomech. 2002;35:523–6.CrossRefGoogle Scholar
  12. 12.
    O’Brien FJ, Hardiman DA, Hazenberg JG, Mercy MV, Mohsin S, Taylor D, Lee TC. The behaviour of microcracks in compact bone. Eur J Morphol. 2005;42:71–9.CrossRefGoogle Scholar
  13. 13.
    O’Brien FJ, Taylor D, Dickson GR, Lee TC. Visualisation of three-dimensional microcracks in compact bone. J Anat. 2000;197:413–20.CrossRefGoogle Scholar
  14. 14.
    Mohsin S, Taylor D, Lee TC. Three-dimensional reconstruction of Haversian system in ovine compact bone. Eur J Morphol. 2002;40:309–15.CrossRefGoogle Scholar
  15. 15.
    Shibata Y, Fujita S, Takahashi H, Yamaguchi A, Koji T. Assessment of decalcifying protocols for detection of specific RNA by non-radioactive in situ hybridization in calcified tissues. Histochem Cell Biol. 2000;11:153–9.CrossRefGoogle Scholar
  16. 16.
    Cunningham CD, Schulte BA, Bianchi LM, Weber PC, Schmiedt BN. Microwave decalcification of human temporal bones. Laryngoscope. 2001;111(2):278–82.CrossRefGoogle Scholar
  17. 17.
    Buijs R, Dogterom AA. An improved method for embedding hard tissue in polymethyl methacrylate. Stain Technol. 1983;58:135–41.CrossRefGoogle Scholar
  18. 18.
    Sanderson C. Entering the realm of mineralized bone processing: a review of the literature and techniques. J Histotechnol. 1997;20:259–66.CrossRefGoogle Scholar
  19. 19.
    Sanderson C, Emmanuel J, Emmanual J, Campbell P. A historical review of paraffin and its development as an embedding medium. J Histotechnol. 1988;11:61–3.CrossRefGoogle Scholar
  20. 20.
    Skinner RA, Hickmon SG, Lumpkin CK, Aronson J, Nicholas RW. Decalcified bone: twenty years of successful specimen management. J Histotechnol. 1997;20:267–77.CrossRefGoogle Scholar
  21. 21.
    Kahveci Z, Minbay FZ, Cavusoglu L. Safranin O staining using a microwave oven. Biotech Histochem. 2000;75:264–8.CrossRefGoogle Scholar
  22. 22.
    Derkx P, Birkenhäger-Frenkel DH. A thionin stain for visualizing bone cells, mineralizing fronts and cement lines in undecalcified bone sections. Biotech Histochem. 1995;70:70–4.CrossRefGoogle Scholar
  23. 23.
    Gruber HE, Marshall GJ, Nolasco LM, Kirchen ME, Rimoin DL. Alkaline and acid phosphatase demonstration in human bone and cartilage: effects of fixation intervals and methacrylate embedments. Stain Technol. 1988;63:299–306.CrossRefGoogle Scholar
  24. 24.
    Taylor CR, Shi SR, Chen C, Young L, Yang C, Cote RJ. Comparative study of antigen retrieval heating methods: microwave, microwave and pressure cooker, autoclave, and steamer. Biotech Histochem. 1996;71:263–70.CrossRefGoogle Scholar
  25. 25.
    Garvey W. Modified elastic tissue-Masson trichrome stain. Stain Technol. 1984;59(4):213–6.CrossRefGoogle Scholar
  26. 26.
    Lebeau A, Muthmann H, Sendelhofert A, Diebold J, Löhrs U. Histochemistry and immunohistochemistry on bone marrow biopsies. A rapid procedure for methyl methacrylate embedding. Pathol Res Pract. 1995;191:121–9.CrossRefGoogle Scholar
  27. 27.
    Hughes FJ, Aubin JE. Culture of cells of the osteoblast lineage. In: Arnett TRHB, editor. Methods in bone biology. London: Chapman and Hall; 1998. p. 1–39.Google Scholar
  28. 28.
    Mikuni-Takagaki Y, Kakai Y, Satohoshi M, Kawano E, Suzuki Y, Kawase T, Saito S. Matrix mineralisation and the differentiation of osteocyte-like cells in culture. J Bone Miner Res. 1995;10:231–42.CrossRefGoogle Scholar
  29. 29.
    Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF. Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res. 1997;12:2014–23.CrossRefGoogle Scholar
  30. 30.
    Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, Fazzalari NL, Kuliwaba JS. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling. Bone. 2012;50:688–94.CrossRefGoogle Scholar
  31. 31.
    Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Püschel K, Djuric M, Amling M, Busse B. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013;7:7542–51.CrossRefGoogle Scholar
  32. 32.
    Bernhard A, Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Krause M, Breer S, Püschel K, Djuric M, Amling M, Busse B. Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int. 2013;24:2671–80.CrossRefGoogle Scholar
  33. 33.
    Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts invivo. J Bone Miner Res. 2008;23:1712–21.CrossRefGoogle Scholar
  34. 34.
    Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013;2013:213234.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26:375–80.CrossRefGoogle Scholar
  36. 36.
    Power J, Noble BS, Loveridge N, Bell KL, Rushton N, Reeve J. Osteocyte lacunar occupancy in the femoral neck cortex: an association with cortical remodeling in hip fracture cases and controls. Calcif Tissue Int. 2001;69:13–9.CrossRefGoogle Scholar
  37. 37.
    Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, Djuric M, Amling M. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9:1065–75.CrossRefGoogle Scholar
  38. 38.
    Carter Y, Suchorab JL, Thomas CD, Clement JG, Cooper DM. Normal variation in cortical osteocyte lacunar parameters in healthy young males. J Anat. 2014;225:328–36.CrossRefGoogle Scholar
  39. 39.
    Kumar V, Abbas AK, Aster JC. Robbins and cotran pathologic basis of disease. 8th ed. Philadelphia, PA: Saunders Elsevier; 2010.Google Scholar
  40. 40.
    Hartmann C. Skeletal development—Wnts are in control. Mol Cell. 2007;24:177–84.Google Scholar
  41. 41.
    Alman BA. Skeletal dysplasias and the growth plate. Clin Genet. 2008;73:24–30.CrossRefGoogle Scholar
  42. 42.
    Mundlos S, Olsen BR. (a). Heritable diseases of the skeleton. Part I: molecular insights into skeletal development-transcription factors and signaling pathways. FASEB J. 1997;11:125–32.CrossRefGoogle Scholar
  43. 43.
    Mundlos S, Olsen BR. (b). Heritable diseases of the skeleton. Part II: molecular insights into skeletal development-matrix components and their homeostasis. FASEB J. 1997;11:227–33.CrossRefGoogle Scholar
  44. 44.
    Superti-Furga A, Bonafé L, Rimoin DL. Molecular-pathogenetic classification of genetic disorders of the skeleton. Am J Med Genet. 2001;106(4):282–93.CrossRefGoogle Scholar
  45. 45.
    Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358:2355–65.CrossRefGoogle Scholar
  46. 46.
    Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38:S3–6.CrossRefGoogle Scholar
  47. 47.
    Lafforgue P. Pathophysiology and natural history of avascular necrosis of bone. Joint Bone Spine. 2006;73:500–7.CrossRefGoogle Scholar
  48. 48.
    Kaplan SL. Osteomyelitis in children. Infect Dis Clin N Am. 2005;19(4):787–97.CrossRefGoogle Scholar
  49. 49.
    Calhoun JH, Manring MM. Adult osteomyelitis. Infect Dis Clin N Am. 2005;19:765–86.CrossRefGoogle Scholar
  50. 50.
    Lee EH, Shafi M, Hui JH. Osteoid osteoma: a current review. J Pediatr Orthop. 2006;26:695–700.CrossRefGoogle Scholar
  51. 51.
    Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125:555–81.CrossRefGoogle Scholar
  52. 52.
    Ramappa AJ, Lee FY, Tang P, Carlson JR, Gebhardt MC, Mankin HJ. Chondroblastoma of bone. J Bone Joint Surg Am. 2000;82:1140–5.CrossRefGoogle Scholar
  53. 53.
    Chow WA. Update on chondrosarcomas. Curr Opin Oncol. 2007;19:371–6.CrossRefGoogle Scholar
  54. 54.
    Weinstein LS. G(s)alpha mutations in fibrous dysplasia and McCune-Albright syndrome. J Bone Miner Res. 2006;21:120–4.CrossRefGoogle Scholar
  55. 55.
    Erben RG, Glösmann M. Histomorphometry in rodents. In: Bone research protocols. Totowa, NJ: Humana Press; 2012. p. 279–303.CrossRefGoogle Scholar
  56. 56.
    Vedi S, Compston J. Bone histomorphometry. In: Bone research protocols: Humana Press; 2003. p. 283–98.Google Scholar
  57. 57.
    Vandeweghe S, Coelho PG, Vanhove C, Wennerberg A, Jimbo R. Utilizing micro-computed tomography to evaluate bone structure surrounding dental implants: a comparison with histomorphometry. J Biomed Mater Res B Appl Biomater. 2013;101:1259–66.CrossRefGoogle Scholar
  58. 58.
    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25:1468–86.CrossRefGoogle Scholar
  59. 59.
    Chappard D, Retailleau-Gaborit N, Legrand E, Baslé MF, Audran M. Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res. 2005;20:1177–84.CrossRefGoogle Scholar
  60. 60.
    Bonnet N, Laroche N, Vico L, Dolleans E, Courteix D, Benhamou CL. Assessment of trabecular bone microarchitecture by two different x-ray microcomputed tomographs: a comparative study of the rat distal tibia using Skyscan and Scanco devices. Med Phys. 2009;36:1286–97.CrossRefGoogle Scholar
  61. 61.
    Müller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Rüegsegger P. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998;23:59–66.CrossRefGoogle Scholar
  62. 62.
    Kuroyanagi G, Adapala NS, Yamaguchi R, Kamiya N, Deng Z, Aruwajoye O, Kutschke M, Chen E, Jo C, Ren Y, Kim HKW. Interleukin-6 deletion stimulates revascularization and new bone formation following ischemic osteonecrosis in a murine model. Bone. 2018;116:221–31.CrossRefGoogle Scholar
  63. 63.
    Zhao B, Zhao W, Wang Y, Zhao Z, Zhao C, Wang S, Gao C. Prior administration of vitamin K2 improves the therapeutic effects of zoledronic acid in ovariectomized rats by antagonizing zoledronic acid-induced inhibition of osteoblasts proliferation and mineralization. PLoS One. 2018;13:e0202269.CrossRefGoogle Scholar
  64. 64.
    Hsu JT, Wang SP, Huang HL, Chen YJ, Wu J, Tsai MT. The assessment of trabecular bone parameters and cortical bone strength: a comparison of micro-CT and dental cone-beam CT. J Biomech. 2013;46:2611–8.CrossRefGoogle Scholar
  65. 65.
    Bagi CM, Hanson N, Andresen C, Pero R, Lariviere R, Turner CH, Laib A. The use of micro-CT to evaluate cortical bone geometry and strength in nude rats: correlation with mechanical testing, pQCT and DXA. Bone. 2006;38(1):136–44.CrossRefGoogle Scholar
  66. 66.
    de Oliveira KM, da Silva RA, Küchler EC, de Queiroz AM, Nelson Filho P, da Silva LA. Correlation between histomorphometric and micro-computed tomography analysis of periapical lesions in mice model. Ultrastruct Pathol. 2015;39(3):187–91.CrossRefGoogle Scholar
  67. 67.
    Balto K, Müller R, Carrington DC, Dobeck J, Stashenko P. Quantification of periapical bone destruction in mice by micro-computed tomography. J Dent Res. 2000;79:35–40.CrossRefGoogle Scholar
  68. 68.
    Wan C, Yuan G, Yang J, Sun Q, Zhang L, Zhang J, Zhang L, Chen Z. MMP9 deficiency increased the size of experimentally induced apical periodontitis. J Endod. 2014;40:658–64.CrossRefGoogle Scholar
  69. 69.
    Wang S, Ogawa T, Zheng S, Miyashita M, Tenkumo T, Gu Z, Lian W, Sasaki K. The effect of low-magnitude high-frequency loading on peri-implant bone healing and implant osseointegration in beagle dogs. J Prosthodont Res. 2018;Google Scholar
  70. 70.
    Sakagami N, Kobayashi T, Nozawa-Inoue K, Oda K, Kojima T, Maeda T, Saito C. A histologic study of deformation of the mandibular condyle caused by distraction in a rat model. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:284–94.CrossRefGoogle Scholar
  71. 71.
    Hirata R, Clozza E, Giannini M, Farrokhmanesh E, Janal M, Tovar N, Bonfante EA, Coelho PG. Shrinkage assessment of low shrinkage composites using micro-computed tomography. J Biomed Mater Res B Appl Biomater. 2015;103:798–806.CrossRefGoogle Scholar
  72. 72.
    Lai G, Kaisarly D, Xu X, Kunzelmann KH. MicroCT-based comparison between fluorescence-aided caries excavation and conventional excavation. Am J Dent. 2014;27:12–6.CrossRefGoogle Scholar
  73. 73.
    Guerrero ME, Jacobs R, Loubele M, Schutyser F, Suetens P, van Steenberghe D. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Investig. 2006;10:1–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Dentistry, Departments of EndodonticsNear East UniversityNicosiaTurkey
  2. 2.Faculty of Medicine, Department of PathologyNear East UniversityNicosiaTurkey
  3. 3.Faculty of Dentistry, Department of Dentomaxillofacial RadiologyAnkara UniversityAnkaraTurkey
  4. 4.Faculty of Medicine, OMFS IMPATH Research Group, Department of Imaging and PathologyUniversity of LeuvenLeuvenBelgium
  5. 5.Oral and Maxillofacial Surgery, University Hospitals LeuvenUniversity of LeuvenLeuvenBelgium

Personalised recommendations