Analysis of Fracture Callus Mechanical Properties Using Micro-CT

  • Burak Bilecenoğlu
  • Mert Ocak


In recent years, imaging methods have started to be used for scientific purposes as well as diagnostic purposes as technology develops. Possibilities that have revolutionary quality have been presented for scientific researches within the features that are operating principle of micro-computed tomography (micro-CT), image quality, and three-dimensional reconstruction. In bone researches, samples in certain size are transferred to the computer environment without degenerating structural integrity and being exposed to chemical processing and microarchitecture which can be examined in every axis. Many bone analysis can be performed with conventional histomorphological methods by using micro-CT. Stretching tests can be applied to the samples such as analysis of advanced finite element by using micro-CT images.

Many parameters such as pathological tissues formed during healing, following either normal bone tissue or notably trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), bone volume (BV), total tissue volume (TV), trabecular bone ratio (BV/TV), structural model index that shows numeric characteristics of trabecular as 3D (SMI), trabecular bone connections, number of trabecular nodes in each tissue volume (N.Nd/TV), and bone mineral density, belong to callus tissue which can be counted fast and in a secure manner.


Fracture Bone healing Callus Micro CT 



All figures in this chapter were scanned and reconstructed with Skyscan 1275 (Skyscan, Kontich, Belgium) in Ankara University, Faculty of Dentistry, Micro-CT Laboratory which was founded by Ankara University Research Fund (Project No:17A0234001) and belongs to the courtesy of Orhan, K., Bilecenoglu B., and Ocak. M.


  1. 1.
    Moore KL, Dalley AF, Agur AM. Clinically oriented anatomy. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.Google Scholar
  2. 2.
    Standring S. Gray’s anatomy E-book: the anatomical basis of clinical practice. Philadelphia, PA: Elsevier Health Sciences; 2015.Google Scholar
  3. 3.
    Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instr Course Lect. 1996;45:371–86.PubMedGoogle Scholar
  4. 4.
    Buckwalter JA, Einhorn TA, Marsh J. Bone and joint healing. Rockwood and Green’s fractures in adults. Philadelphia, PA: Lippincott, Williams, and Wilkins; 2001. p. 245–71.Google Scholar
  5. 5.
    Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. II: formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect. 1996;45:387–99.PubMedGoogle Scholar
  6. 6.
    Fyhrie DP. Summary—measuring “bone quality”. J Musculoskelet Neuronal Interact. 2005;5(4):318–20.PubMedGoogle Scholar
  7. 7.
    Sakka S, Coulthard P. Bone quality: a reality for the process of osseointegration. Implant Dent. 2009;18(6):480–5. Scholar
  8. 8.
    Fanuscu MI, Chang TL. Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible. Clin Oral Implants Res. 2004;15(2):213–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998;23(1):59–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Marsh DR, Li G. The biology of fracture healing: optimising outcome. Br Med Bull. 1999;55(4):856–69.PubMedCrossRefGoogle Scholar
  11. 11.
    Mark H, Penington A, Nannmark U, Morrison W, Messina A. Microvascular invasion during endochondral ossification in experimental fractures in rats. Bone. 2004;35(2):535–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Grundnes O, Reikeras O. The importance of the hematoma for fracture healing in rats. Acta Orthop Scand. 1993;64(3):340–2. Scholar
  13. 13.
    Grundnes O, Reikeras O. The role of hematoma and periosteal sealing for fracture healing in rats. Acta Orthop Scand. 1993;64(1):47–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Van der Wiel HE, Lips P, Nauta J, Patka P, Haarman HJ, Teule GJ. Loss of bone in the proximal part of the femur following unstable fractures of the leg. J Bone Joint Surg Am. 1994;76(2):230–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Karlsson MK, Nilsson BE, Obrant KJ. Bone mineral loss after lower extremity trauma. 62 cases followed for 15-38 years. Acta Orthop Scand. 1993;64(3):362–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Mattox DE. Bone healing and grafting. Ear Nose Throat J. 1983;62(8):409–11.PubMedGoogle Scholar
  17. 17.
    Butz F, Ogawa T, Chang T-L, Nishimura I. Three-dimensional bone-implant integration profiling using micro-computed tomography. Int J Oral Maxillofac Implants. 2006;21(5):687–95.PubMedGoogle Scholar
  18. 18.
    Morinaga K, Kido H, Sato A, Watazu A, Matsuura M. Chronological changes in the ultrastructure of titanium-bone interfaces: analysis by light microscopy, transmission electron microscopy, and micro-computed tomography. Clin Implant Dent Relat Res. 2009;11(1):59–68.PubMedCrossRefGoogle Scholar
  19. 19.
    Mulder L, Koolstra JH, de Jonge HW, van Eijden TM. Architecture and mineralization of developing cortical and trabecular bone of the mandible. Anat Embryol (Berl). 2006;211(1):71–8. Scholar
  20. 20.
    Van Oosterwyck H, Duyck J, Sloten JV, Perre GV, Jansen J, Wevers M, et al. The use of microfocus computerized tomography as a new technique for characterizing bone tissue around oral implants. J Oral Implantol. 2000;26(1):5–12.CrossRefGoogle Scholar
  21. 21.
    Cartmell S, Huynh K, Lin A, Nagaraja S, Guldberg R. Quantitative microcomputed tomography analysis of mineralization within three-dimensional scaffolds in vitro. J Biomed Mater Res A. 2004;69(1):97–104.PubMedCrossRefGoogle Scholar
  22. 22.
    Hollister SJ, Lin C, Saito E, Lin C, Schek R, Taboas J, et al. Engineering craniofacial scaffolds. Orthod Craniofac Res. 2005;8(3):162–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Dursun E, Dursun CK, Eratalay K, Orhan K, Celik HH, Tözüm TF. Do porous titanium granule grafts affect bone microarchitecture at augmented maxillary sinus sites? A pilot split-mouth human study. Implant Dent. 2015;24(4):427–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Shefelbine SJ, Simon U, Claes L, Gold A, Gabet Y, Bab I, et al. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone. 2005;36(3):480–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Bosemark P, Isaksson H, McDonald MM, Little DG, Tägil M. Augmentation of autologous bone graft by a combination of bone morphogenic protein and bisphosphonate increased both callus volume and strength. Acta Orthop. 2013;84(1):106–11.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Reynolds DG, Hock C, Shaikh S, Jacobson J, Zhang X, Rubery PT, et al. Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts. J Biomech. 2007;40(14):3178–86.PubMedCrossRefGoogle Scholar
  27. 27.
    Ezirganli S, Polat S, Baris E, Tatar I, Celik HH. Comparative investigation of the effects of different materials used with a titanium barrier on new bone formation. Clin Oral Implants Res. 2013;24(3):312–9. Scholar
  28. 28.
    Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, Barnes GL, Einhorn TA, et al. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone. 2009;44(2):335–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Camacho NP, Bostrom MP. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone. 2007;41(6):928–36.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nyman JS, Munoz S, Jadhav S, Mansour A, Yoshii T, Mundy GR, et al. Quantitative measures of femoral fracture repair in rats derived by micro-computed tomography. J Biomech. 2009;42(7):891–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W. Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc. 2005;218(2):171–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Burak Bilecenoğlu
    • 1
  • Mert Ocak
    • 2
  1. 1.Faculty of Dentistry, Department of AnatomyAnkara UniversityAnkaraTurkey
  2. 2.Vocational School of HealthAnkara UniversityAnkaraTurkey

Personalised recommendations