Advertisement

Artifacts in Micro-CT

  • Kaan Orhan
  • Karla de Faria Vasconcelos
  • Hugo Gaêta-Araujo
Chapter

Abstract

The use of micro-CT in medicine and engineering is getting quite popular in the research field. Micro-CT and its applications in dentistry, medicine, tissue engineering, aerospace engineering, geology, and material and civil engineering are a growing demand. Along with this demand, challenges with micro-CT imaging also come together especially in terms of scanning protocols and artifacts. This chapter focuses mainly on main causes of artifacts in micro-CT and how to minimize or eliminate them.

Keywords

Micro-CT Artifacts Beam hardening Reconstruction 

References

  1. 1.
    Lewis R. Medical applications of synchrotron radiation x-rays. Phys Med Biol. 1997;42(7):1213–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Elliott JC, Wong FS, Anderson P, Davis GR, Dowker SE. Determination of mineral concentration in dental enamel from X-ray attenuation measurements. Connect Tissue Res. 1998;38(1–4):61–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Willmott NS, Wong FS, Davis GR. An X-ray microtomography study on the mineral concentration of carious dentine removed during cavity preparation in deciduous molars. Caries Res. 2007;41(2):129–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Wong FS, Anderson P, Fan H, Davis GR. X-ray microtomographic study of mineral concentration distribution in deciduous enamel. Arch Oral Biol. 2004;49(11):937–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Zou W, Hunter N, Swain MV. Application of polychromatic μCT for mineral density determination. J Dent Res. 2011;90(1):18–30.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hamba H, Nikaido T, Sadr A, Nakashima S, Tagami J. Enamel lesion parameter correlations between polychromatic microCT and TMR. J Dent Res. 2012;91(6):586–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Kovács M, Danyi R, Erdélyi M, Fejérdy P, Dobó-Nagy C. Distortional effect of beam-hardening artifact on microCT: a simulation study based on an in vitro caries model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(4):591–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Hunter AK, McDavid WD. Characterization and correction of cupping effect artifact in cone beam CT. Dentomaxillofac Radiol. 2012;41(3):217–23.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, Schoemer E. Artifact in CBCT: a review. Dentomaxillofac Radiol. 2011;40(5):265–73.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Nardi C, Borri C, Regini F, Calistri L, Castellani A, Lorini C, Colagrande S. Metal and motion artifacts by cone beam computed tomography (CBCT) in dental and maxillofacial study. Radiol Med. 2015;120(7):618–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Boas FE, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging Med. 2012;4(2):229–40.CrossRefGoogle Scholar
  12. 12.
    Shahmoradi M, Lashgari M, Rabbani H, Qin J, Swain M. A comparative study of new and current methods for dental micro-CT image denoising. Dentomaxillofac Radiol. 2016;45:20150302.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kyriakou Y, Prell D, Kalender WA. Ring artifact correction for high-resolution micro CT. Phys Med Biol. 2009;54(17):N385–91.  https://doi.org/10.1088/0031-9155/54/17/N02.PubMedCrossRefGoogle Scholar
  14. 14.
    Anas EM, Lee SY, Hasan K. Classification of ring artifacts for their effective removal using type adaptive correction schemes. Comput Biol Med. 2011;41(6):390–401.  https://doi.org/10.1016/j.compbiomed.2011.03.018.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhu Y, Zhao M, Li H, Zhang P. Micro-CT artifacts reduction based on detector random shifting and fast data inpainting. Med Phys. 2013;40(3):031114.  https://doi.org/10.1118/1.4790697.PubMedCrossRefGoogle Scholar
  16. 16.
    Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics. 2004;24(6):1679–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Makins SR. Artifacts interfering with interpretation of cone beam computed tomography images. Dent Clin North Am. 2014;58(3):485–95. https://doi.org/10.1016/j.cden.2014.04.007. Review.PubMedCrossRefGoogle Scholar
  18. 18.
    Jennings RJ. A method for comparing beam-hardening filter materials for diagnostic radiology. Med Phys. 1988;15(4):588–99.PubMedCrossRefGoogle Scholar
  19. 19.
    Meganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA. Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone. 2009;45(6):1104–16.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G. Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys. 2002;29(11):2672–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Queiroz PM, Rovaris K, Gaêta-Araujo H, Marzola de Souza Bueno S, Freitas DQ, Groppo FC, Haiter-Neto F. Influence of artifact reduction tools in micro-computed tomography images for endodontic research. J Endod. 2017;43(12):2108–11. https://doi.org/10.1016/j.joen.2017.07.024.PubMedCrossRefGoogle Scholar
  22. 22.
    Burghardt AJ, Kazakia GJ, Laib A, Majumdar S. Quantitative assessment of bone tissue mineralization with polychromatic micro-computed tomography. Calcif Tissue Int. 2008;83(2):129–38.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Mulder L, Koolstra JH, Van Eijden TM. Accuracy of microCT in the quantitative determination of the degree and distribution of mineralization in developing bone. Acta Radiol. 2004;45(7):769–77.PubMedCrossRefGoogle Scholar
  24. 24.
    Bruker Method Note. An overview of NRecon: reconstructing the best images from your microCT scan.Google Scholar
  25. 25.
    Zhao J, Hu X, Zou J, Hu X. Geometric parameters estimation and calibration in cone-beam micro-CT. Sensors (Basel). 2015;15(9):22811–25.CrossRefGoogle Scholar
  26. 26.
    Von Smekal L, Kachelrieß M, Stepina E, Kalender WA. Geometric misalignment and calibration in cone-beam tomography. Med Phys. 2004;31:3242–66.  https://doi.org/10.1118/1.1803792.CrossRefGoogle Scholar
  27. 27.
    Yang K, Kwan ALC, Miller DWF, Boone JM. A geometric calibration method for cone beam CT systems. Med Phys. 2006;33:1695–706.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kaan Orhan
    • 1
    • 2
    • 3
  • Karla de Faria Vasconcelos
    • 4
  • Hugo Gaêta-Araujo
    • 5
  1. 1.Faculty of Dentistry, Department of Dentomaxillofacial RadiologyAnkara UniversityAnkaraTurkey
  2. 2.Faculty of Medicine, OMFS IMPATH Research Group, Department of Imaging and PathologyUniversity of LeuvenLeuvenBelgium
  3. 3.Oral and Maxillofacial Surgery, University Hospitals LeuvenUniversity of LeuvenLeuvenBelgium
  4. 4.Faculty of Medicine, OMFS IMPATH Research Group, Department of Imaging and PathologyUniversity of LeuvenAnkaraTurkey
  5. 5.Department of Oral Diagnosis, Area of Oral RadiologyPiracicaba Dental School, University of CampinasPiracicabaBrazil

Personalised recommendations