Fundamentals of Micro-CT Imaging

  • Kaan Orhan
  • Arda Büyüksungur


This chapter briefly describes the fundamentals of micro-CT. The sections will briefly describe principles of micro-computed tomography, reconstruction to image, acquisition, and creation of acquisition data. In the following sections, micro-CT components, tube-based micro-CT systems, and synchrotron micro-CT techniques are covered. In the finals sections, X-ray fluorescence computed tomography (XFCT), phase-contrast micro-CT, and small-angle X-ray scattering systems are being discussed. Topics including artifacts found in actual systems, precision and accuracy of reconstructions, and challenges and speculations for the future are covered in the following chapter.


Phase-contrast micro-CT SAXS Acquisition Reconstruction X-ray detectors 


  1. 1.
    Feldkamp LA, et al. Practical cone-beam algorithm. J Opt Soc Am A. 1984;1(6):612–9.CrossRefGoogle Scholar
  2. 2.
    Barigou M, Douaire M. X-ray micro-computed tomography for resolving food microstructures. In: Food microstructures. Cambridge: Woodhead Publishing; 2013. p. 246–72.CrossRefGoogle Scholar
  3. 3.
    Stock SR. Microcomputed tomography: methodology and applications. Boca Raton, FL: CRC Press; 2008.Google Scholar
  4. 4.
    Iglauer S, Lebedev M. High pressure-elevated temperature X-ray micro-computed tomography for subsurface applications. Adv Colloid Interf Sci. 2018;256:393–410.CrossRefGoogle Scholar
  5. 5.
    SkyScan NV. SkyScan 1172 desktop X-ray microtomography instruction manual. 2005Google Scholar
  6. 6.
    Badea CT. Small animal X-ray computed tomography. In: Handbook of X-ray imaging: physics and technology. Boca Raton, FL: CRC Press; 2018.Google Scholar
  7. 7.
    Iglauer S, Lebedev M. High pressure-elevated temperature X-ray micro-computed tomography for subsurface applications. Adv Colloid Interf Sci. 2018;256:393–410.CrossRefGoogle Scholar
  8. 8.
    Sharma KS, et al. Interior micro-CT with an offset detector. Med Phys. 2014;41(6):061915.CrossRefGoogle Scholar
  9. 9.
    Boisseau P. Determination of three-dimensional trace element distributions by the use of monochromatic X-ray microbeams, Ph.D. Dissertation, MIT Cambridge, 1986.Google Scholar
  10. 10.
    Ahmad M, Bazalova-Carter M, Fahrig R, Xing L. Optimized detector angular configuration increases the sensitivity of X-ray fluorescence computed tomography (XFCT). IEEE Trans Med Imaging. 2015;34(5):1140–7.CrossRefGoogle Scholar
  11. 11.
    Sasaya T, Sunaguchi N, Hyodo K, Zeniya T, Yuasa T. Multi-pinhole fluorescent X-ray computed tomography for molecular imaging. Sci Rep. 2017;7(1):5742.CrossRefGoogle Scholar
  12. 12.
    Ahmad M, Pratx G, Bazalova M, Xing L. X-ray luminescence and X-ray fluorescence computed tomography: new molecular imaging modalities. IEEE Access. 2014;2:1051–61.CrossRefGoogle Scholar
  13. 13.
    Takeda T, et al. X-ray fluorescent CT imaging of cerebral uptake of stable-iodine perfusion agent iodoamphetamine analog IMP in mice. J Synchrotron Radiat. 2009;16:57–62.CrossRefGoogle Scholar
  14. 14.
    Hetterich H, et al. Phase-contrast CT: qualitative and quantitative evaluation of atherosclerotic carotid artery plaque. Radiology. 2014;271(3):870–8.CrossRefGoogle Scholar
  15. 15.
    Li M, et al. The applications of small-angle X-ray scattering in studying nano-scaled polyoxometalate clusters in solutions. J Nanopart Res. 2018;20(5):124.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kaan Orhan
    • 1
    • 2
    • 3
  • Arda Büyüksungur
    • 4
  1. 1.Faculty of Dentistry, Department of Dentomaxillofacial RadiologyAnkara UniversityAnkaraTurkey
  2. 2.Faculty of Medicine, OMFS IMPATH Research Group, Department of Imaging and PathologyUniversity of LeuvenLeuvenBelgium
  3. 3.Oral and Maxillofacial Surgery, University Hospitals LeuvenUniversity of LeuvenLeuvenBelgium
  4. 4.BIOMATEN, Center of Excellence in Biomaterials and Tissue EngineeringMETU, Biotechnology Research UnitAnkaraTurkey

Personalised recommendations