Advertisement

Cancer Stem Cells: From Birth to Death

  • Alice Turdo
  • Miriam Gaggianesi
  • Aurora Chinnici
  • Giorgio Stassi
  • Matilde Todaro
Chapter
Part of the Resistance to Targeted Anti-Cancer Therapeutics book series (RTACT, volume 19)

Abstract

Conspicuous investigations have proven the role of cancer stem cells (CSCs) in the onset and progression of a plethora of liquid and solid neoplasms. CSCs are endowed with the capability of initiating tumor growth and becoming dormant at distant organ sites just waiting for optimal conditions amenable for metastatic outgrowth. This cancer subpopulation is inherently resistant to anticancer therapeutics, and its targeting could avoid metastatic disease, which is largely incurable, and clinical relapses. CSCs are considered the Achilles heel of cancer. However, many efforts are necessary to identify univocal CSC markers as well as specific CSC biomarkers of therapeutic response.

Here, we summarize CSCs’ peculiarities and highlight novel anticancer compounds coping with the hallmarks of CSCs, comprising the resistance to cell death, their quiescent state, the immune suppression, the epithelial to mesenchymal transition (EMT), and their metabolic adaptation to a hostile microenvironment.

Keywords

Cancer Metastasis Cancer stem cells Drug resistance Anticancer drugs 

Abbreviations

ABC

ATP-binding cassette

ALDH

Aldehyde dehydrogenase

AML

Acute myeloid leukemia

ATM

Ataxia telangiectasia mutated

BCRP

Breast cancer resistance protein

BET

Bromodomain and extra-terminal

BMI-1

B lymphoma Mo-MLV insertion region 1 homolog

BMP

Bone morphogenetic protein

CAF

Cancer-associated fibroblast

CCR2

Chemokine (C-C motif) receptor 2

c-FLIP

Cellular FLICE-like inhibitor protein

CHK

Checkpoint kinase

CSC

Cancer stem cell

CSF1R

Cell receptors colony-stimulating factor 1 receptor

DDL

Delta-like protein

DKK

Dickkopf

DNMT1

DNA methyltransferase 1

DVL

Dishevelled

EMT

Epithelial to mesenchymal transition

FoxO

Forkhead Box O

FZD

Frizzled

GSTO1

Glutathione S-transferase omega 1

HDAC

Histone deacetylase

HDM

Histone demethylase

HFSC

Hair follicle stem cell

HH

Hedgehog

HIF

Hypoxia-inducible factor

HMT

Histone methyltransferase

HR

Homologous recombination

HSC

Hematopoietic stem cell

JAG

Jagged

LRP

Lipoprotein receptor-related protein

MDR

Multidrug resistance

MRP

Multidrug resistance-associated protein

NHEJ

Non-homologous end joining

NICD

Notch intracellular domain

NSCLC

Non-small cell lung cancer

OXPHOS

Oxidative phosphorylation

PCP

Planar cell polarity

PD-L1

Programmed cell death ligand 1

P-gp

P-glycoprotein

PTCH

Patched

ROS

Reactive oxygen species

sFRPs

Secreted Frizzled-related proteins

SMO

Smoothened

TA

Transient amplifying

TAM

Tumor-associated macrophages

TAZ

Transcriptional coactivator with PDZ-binding motif

TCA

Tricarboxylic acid

TCF/LEF

T cell factor/lymphoid enhancer factor

TGF-β

Transforming growth factor beta

TNF-α

Tumor necrosis factor α

TRAIL

Tumor necrosis factor-related apoptosis-inducing ligand

WIF-1

WNT inhibitory factor 1

YAP

Yes-associated protein

References

  1. 1.
    Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44(6):2259–65.PubMedGoogle Scholar
  2. 2.
    Pertschuk LP, Tobin EH, Brigati DJ, Kim DS, Bloom ND, Gaetjens E, Berman PJ, Carter AC, Degenshein GA. Immunofluorescent detection of estrogen receptors in breast cancer. Comparison with dextran-coated charcoal and sucrose gradient assays. Cancer. 1978;41(3):907–11.CrossRefGoogle Scholar
  3. 3.
    Poste G, Doll J, Hart IR, Fidler IJ. In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res. 1980;40(5):1636–44.PubMedGoogle Scholar
  4. 4.
    Raz A, McLellan WL, Hart IR, Bucana CD, Hoyer LC, Sela BA, Dragsten P, Fidler IJ. Cell surface properties of B16 melanoma variants with differing metastatic potential. Cancer Res. 1980;40(5):1645–51.PubMedGoogle Scholar
  5. 5.
    Mitelman F, Mark J, Levan G, Levan A. Tumor etiology and chromosome pattern. Science. 1972;176(4041):1340–1.CrossRefGoogle Scholar
  6. 6.
    Shapiro JR, Yung WK, Shapiro WR. Isolation, karyotype, and clonal growth of heterogeneous subpopulations of human malignant gliomas. Cancer Res. 1981;41(6):2349–59.PubMedGoogle Scholar
  7. 7.
    Danielson KG, Anderson LW, Hosick HL. Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo. Cancer Res. 1980;40(6):1812–9.PubMedGoogle Scholar
  8. 8.
    Barranco SC, Ho DH, Drewinko B, Romsdahl MM, Humphrey RM. Differential sensitivites of human melanoma cells grown in vitro to arabinosylcytosine. Cancer Res. 1972;32(12):2733–6.PubMedGoogle Scholar
  9. 9.
    Bruce WR, Van Der Gaag H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature. 1963;199:79–80.CrossRefGoogle Scholar
  10. 10.
    Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91.  https://doi.org/10.1016/j.stem.2014.02.006.CrossRefGoogle Scholar
  11. 11.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.CrossRefGoogle Scholar
  12. 12.
    Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.  https://doi.org/10.1038/nature10762.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vlashi E, Pajonk F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol. 2015;31:28–35.  https://doi.org/10.1016/j.semcancer.2014.07.001.CrossRefPubMedGoogle Scholar
  14. 14.
    Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9.  https://doi.org/10.1016/j.cell.2009.08.017.CrossRefPubMedGoogle Scholar
  15. 15.
    Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317(5836):337.  https://doi.org/10.1126/science.1142596.CrossRefPubMedGoogle Scholar
  16. 16.
    Deshpande AJ, Cusan M, Rawat VP, Reuter H, Krause A, Pott C, Quintanilla-Martinez L, Kakadia P, Kuchenbauer F, Ahmed F, Delabesse E, Hahn M, Lichter P, Kneba M, Hiddemann W, Macintyre E, Mecucci C, Ludwig WD, Humphries RK, Bohlander SK, Feuring-Buske M, Buske C. Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. Cancer Cell. 2006;10(5):363–74.  https://doi.org/10.1016/j.ccr.2006.08.023.CrossRefPubMedGoogle Scholar
  17. 17.
    Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442(7104):818–22.  https://doi.org/10.1038/nature04980.CrossRefPubMedGoogle Scholar
  18. 18.
    Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441(7092):475–82.  https://doi.org/10.1038/nature04703.CrossRefPubMedGoogle Scholar
  19. 19.
    Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–99.  https://doi.org/10.1146/annurev.cellbio.22.010305.104154.CrossRefPubMedGoogle Scholar
  20. 20.
    Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.  https://doi.org/10.1038/nrc1098.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Till JE, Mc CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–22.CrossRefGoogle Scholar
  22. 22.
    Illmensee K, Mintz B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc Natl Acad Sci U S A. 1976;73(2):549–53.CrossRefGoogle Scholar
  23. 23.
    Fialkow PJ. Stem cell origin of human myeloid blood cell neoplasms. Verhandlungen der Deutschen Gesellschaft fur Pathologie. 1990;74:43–7.PubMedGoogle Scholar
  24. 24.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.  https://doi.org/10.1038/367645a0.CrossRefPubMedGoogle Scholar
  25. 25.
    Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34.  https://doi.org/10.1038/nm.4409.CrossRefGoogle Scholar
  26. 26.
    Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112(13):4793–807.  https://doi.org/10.1182/blood-2008-08-077941.CrossRefPubMedGoogle Scholar
  27. 27.
    Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992;89(7):2804–8.CrossRefGoogle Scholar
  28. 28.
    Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.CrossRefGoogle Scholar
  29. 29.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.CrossRefGoogle Scholar
  30. 30.
    Blair A, Sutherland HJ. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol. 2000;28(6):660–71.CrossRefGoogle Scholar
  31. 31.
    Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood. 1997;89(9):3104–12.PubMedGoogle Scholar
  32. 32.
    Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA, Luger SM, Phillips GL. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14(10):1777–84.CrossRefGoogle Scholar
  33. 33.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.  https://doi.org/10.1038/nature03128.CrossRefGoogle Scholar
  34. 34.
    Griguer CE, Oliva CR, Gobin E, Marcorelles P, Benos DJ, Lancaster JR Jr, Gillespie GY. CD133 is a marker of bioenergetic stress in human glioma. PLoS One. 2008;3(11):e3655.  https://doi.org/10.1371/journal.pone.0003655.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hilbe W, Dirnhofer S, Oberwasserlechner F, Schmid T, Gunsilius E, Hilbe G, Woll E, Kahler CM. CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol. 2004;57(9):965–9.  https://doi.org/10.1136/jcp.2004.016444.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 2006;351(4):820–4.  https://doi.org/10.1016/j.bbrc.2006.10.128.CrossRefPubMedGoogle Scholar
  37. 37.
    Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, Sesterhenn IA, McLeod DG, Srivastava S, Rhim JS. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 2007;67(7):3153–61.  https://doi.org/10.1158/0008-5472.CAN-06-4429.CrossRefPubMedGoogle Scholar
  38. 38.
    Phillips TM, McBride WH, Pajonk F. The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98(24):1777–85.  https://doi.org/10.1093/jnci/djj495.CrossRefPubMedGoogle Scholar
  39. 39.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.  https://doi.org/10.1038/nature05384.CrossRefGoogle Scholar
  40. 40.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.  https://doi.org/10.1016/j.stem.2007.08.014.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.  https://doi.org/10.1158/0008-5472.CAN-05-2018.CrossRefPubMedGoogle Scholar
  42. 42.
    Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, Gulotta G, Dieli F, De Maria R, Stassi G. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14(3):342–56.  https://doi.org/10.1016/j.stem.2014.01.009.CrossRefGoogle Scholar
  43. 43.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.  https://doi.org/10.1073/pnas.0530291100.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine. 2012;7(4):597–615.  https://doi.org/10.2217/nnm.12.22.CrossRefPubMedGoogle Scholar
  45. 45.
    Shervington A, Lu C. Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Investig. 2008;26(5):535–42.  https://doi.org/10.1080/07357900801904140.CrossRefGoogle Scholar
  46. 46.
    Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W, Frank MH. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 2005;65(10):4320–33.  https://doi.org/10.1158/0008-5472.CAN-04-3327.CrossRefPubMedGoogle Scholar
  47. 47.
    Jin F, Zhao L, Guo YJ, Zhao WJ, Zhang H, Wang HT, Shao T, Zhang SL, Wei YJ, Feng J, Jiang XB, Zhao HY. Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells. Brain Res. 2010;1336:103–11.  https://doi.org/10.1016/j.brainres.2010.04.005.CrossRefPubMedGoogle Scholar
  48. 48.
    Shigeta J, Katayama K, Mitsuhashi J, Noguchi K, Sugimoto Y. BCRP/ABCG2 confers anticancer drug resistance without covalent dimerization. Cancer Sci. 2010;101(8):1813–21.  https://doi.org/10.1111/j.1349-7006.2010.01605.x.CrossRefPubMedGoogle Scholar
  49. 49.
    Hu C, Li H, Li J, Zhu Z, Yin S, Hao X, Yao M, Zheng S, Gu J. Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. Carcinogenesis. 2008;29(12):2289–97.  https://doi.org/10.1093/carcin/bgn223.CrossRefPubMedGoogle Scholar
  50. 50.
    Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, Sayre JW, Stefani E, McBride W, Pajonk F. In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst. 2009;101(5):350–9.  https://doi.org/10.1093/jnci/djn509.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lagadec C, Vlashi E, Bhuta S, Lai C, Mischel P, Werner M, Henke M, Pajonk F. Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients. BMC Cancer. 2014;14:152.  https://doi.org/10.1186/1471-2407-14-152.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, Popescu R, Della Donna L, Evers P, Dekmezian C, Reue K, Christofk H, Mischel PS, Pajonk F. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A. 2011;108(38):16062–7.  https://doi.org/10.1073/pnas.1106704108.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Elfadl D, Hodgkinson VC, Long ED, Scaife L, Drew PJ, Lind MJ, Cawkwell L. A pilot study to investigate the role of the 26S proteasome in radiotherapy resistance and loco-regional recurrence following breast conserving therapy for early breast cancer. Breast. 2011;20(4):334–7.  https://doi.org/10.1016/j.breast.2011.02.017.CrossRefPubMedGoogle Scholar
  54. 54.
    Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol. 2016;11:47–76.  https://doi.org/10.1146/annurev-pathol-012615-044438.CrossRefPubMedGoogle Scholar
  55. 55.
    Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118(5):635–48.  https://doi.org/10.1016/j.cell.2004.08.012.CrossRefPubMedGoogle Scholar
  56. 56.
    Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22(4):411–7.  https://doi.org/10.1038/nbt950.CrossRefPubMedGoogle Scholar
  57. 57.
    Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11(12):1351–4.  https://doi.org/10.1038/nm1328.CrossRefPubMedGoogle Scholar
  58. 58.
    Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature. 2012;488(7412):527–30.  https://doi.org/10.1038/nature11344.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cortina C, Turon G, Stork D, Hernando-Momblona X, Sevillano M, Aguilera M, Tosi S, Merlos-Suarez A, Stephan-Otto Attolini C, Sancho E, Batlle E. A genome editing approach to study cancer stem cells in human tumors. EMBO Mol Med. 2017;9(7):869–79.  https://doi.org/10.15252/emmm.201707550.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science. 2014;344(6189):1242281.  https://doi.org/10.1126/science.1242281.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, Delatte B, Caauwe A, Lenglez S, Nkusi E, Brohee S, Salmon I, Dubois C, del Marmol V, Fuks F, Beck B, Blanpain C. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511(7508):246–50.  https://doi.org/10.1038/nature13305.CrossRefGoogle Scholar
  62. 62.
    Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40.  https://doi.org/10.1038/nrm3591.CrossRefPubMedGoogle Scholar
  63. 63.
    Chen W, Dong J, Haiech J, Kilhoffer MC, Zeniou M. Cancer stem cell quiescence and plasticity as major challenges in Cancer therapy. Stem Cells Int. 2016;2016:1740936.  https://doi.org/10.1155/2016/1740936.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5(7):738–43.  https://doi.org/10.1038/ni1080.CrossRefPubMedGoogle Scholar
  65. 65.
    Bea S, Tort F, Pinyol M, Puig X, Hernandez L, Hernandez S, Fernandez PL, van Lohuizen M, Colomer D, Campo E. BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res. 2001;61(6):2409–12.PubMedGoogle Scholar
  66. 66.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68(22):9125–30.  https://doi.org/10.1158/0008-5472.CAN-08-2629.CrossRefPubMedGoogle Scholar
  67. 67.
    Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S, Calin GA, Mukherjee P. MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res. 2009;69(23):9090–5.  https://doi.org/10.1158/0008-5472.CAN-09-2552.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells. 2015;7(1):27–36.  https://doi.org/10.4252/wjsc.v7.i1.27.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Avgustinova A, Benitah SA. The epigenetics of tumour initiation: cancer stem cells and their chromatin. Curr Opin Genet Dev. 2016;36:8–15.  https://doi.org/10.1016/j.gde.2016.01.003.CrossRefPubMedGoogle Scholar
  70. 70.
    Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, Date S, Sugimoto S, Kanai T, Sato T. Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature. 2017;545(7653):187–92.  https://doi.org/10.1038/nature22081.CrossRefGoogle Scholar
  71. 71.
    de Sousa e Melo F, Kurtova AV, Harnoss JM, Kljavin N, Hoeck JD, Hung J, Anderson JE, Storm EE, Modrusan Z, Koeppen H, Dijkgraaf GJ, Piskol R, de Sauvage FJ. A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature. 2017;543(7647):676–80.  https://doi.org/10.1038/nature21713.CrossRefPubMedGoogle Scholar
  72. 72.
    Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L. DNA Damage in Stem Cells. Mol Cell. 2017;66(3):306–19.  https://doi.org/10.1016/j.molcel.2017.04.006.CrossRefPubMedGoogle Scholar
  73. 73.
    Bartucci M, Svensson S, Romania P, Dattilo R, Patrizii M, Signore M, Navarra S, Lotti F, Biffoni M, Pilozzi E, Duranti E, Martinelli S, Rinaldo C, Zeuner A, Maugeri-Sacca M, Eramo A, De Maria R. Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death Differ. 2012;19(5):768–78.  https://doi.org/10.1038/cdd.2011.170.CrossRefPubMedGoogle Scholar
  74. 74.
    Sancho P, Barneda D, Heeschen C. Hallmarks of cancer stem cell metabolism. Br J Cancer. 2016;114(12):1305–12.  https://doi.org/10.1038/bjc.2016.152.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Manic G, Signore M, Sistigu A, Russo G, Corradi F, Siteni S, Musella M, Vitale S, De Angelis ML, Pallocca M, Amoreo CA, Sperati F, Di Franco S, Barresi S, Policicchio E, De Luca G, De Nicola F, Mottolese M, Zeuner A, Fanciulli M, Stassi G, Maugeri-Sacca M, Baiocchi M, Tartaglia M, Vitale I, De Maria R. CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut. 2017.  https://doi.org/10.1136/gutjnl-2016-312623.CrossRefGoogle Scholar
  76. 76.
    Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013;23(3):316–31.  https://doi.org/10.1016/j.ccr.2013.01.022.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Chen CL, Uthaya Kumar DB, Punj V, Xu J, Sher L, Tahara SM, Hess S, Machida K. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab. 2016;23(1):206–19.  https://doi.org/10.1016/j.cmet.2015.12.004.CrossRefPubMedGoogle Scholar
  78. 78.
    Shen YA, Wang CY, Hsieh YT, Chen YJ, Wei YH. Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle. 2015;14(1):86–98.  https://doi.org/10.4161/15384101.2014.974419.CrossRefPubMedGoogle Scholar
  79. 79.
    Ye XQ, Li Q, Wang GH, Sun FF, Huang GJ, Bian XW, Yu SC, Qian GS. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer. 2011;129(4):820–31.  https://doi.org/10.1002/ijc.25944.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Janiszewska M, Suva ML, Riggi N, Houtkooper RH, Auwerx J, Clement-Schatlo V, Radovanovic I, Rheinbay E, Provero P, Stamenkovic I. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 2012;26(17):1926–44.  https://doi.org/10.1101/gad.188292.112.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O’Dwyer KM, Liesveld JL, Brookes PS, Becker MW, Jordan CT. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329–41.  https://doi.org/10.1016/j.stem.2012.12.013.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, Barneda D, Sellers K, Campos-Olivas R, Grana O, Viera CR, Yuneva M, Sainz B Jr, Heeschen C. MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22(4):590–605.  https://doi.org/10.1016/j.cmet.2015.08.015.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Nakajima EC, Van Houten B. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinog. 2013;52(5):329–37.  https://doi.org/10.1002/mc.21863.CrossRefPubMedGoogle Scholar
  84. 84.
    Peiris-Pages M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res. 2016;18(1):55.  https://doi.org/10.1186/s13058-016-0712-6.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, Weil RJ, Nakano I, Sarkaria JN, Stringer BW, Day BW, Li M, Lathia JD, Rich JN, Hjelmeland AB. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013;16(10):1373–82.  https://doi.org/10.1038/nn.3510.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gordon N, Skinner AM, Pommier RF, Schillace RV, O’Neill S, Peckham JL, Muller P, Condron ME, Donovan C, Naik A, Hansen J, Pommier SJ. Gene expression signatures of breast cancer stem and progenitor cells do not exhibit features of Warburg metabolism. Stem Cell Res Ther. 2015;6:157.  https://doi.org/10.1186/s13287-015-0153-7.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Liu J, Sato C, Cerletti M, Wagers A. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol. 2010;92:367–409.  https://doi.org/10.1016/S0070-2153(10)92012-7.CrossRefPubMedGoogle Scholar
  88. 88.
    Merchant AA, Matsui W. Targeting Hedgehog--a cancer stem cell pathway. Clin Cancer Res. 2010;16(12):3130–40.  https://doi.org/10.1158/1078-0432.CCR-09-2846.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    de Sousa EMF, Vermeulen L. Wnt signaling in cancer stem cell biology. Cancer. 2016;8(7):60.  https://doi.org/10.3390/cancers8070060.CrossRefGoogle Scholar
  90. 90.
    Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12(8):445–64.  https://doi.org/10.1038/nrclinonc.2015.61.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–99.  https://doi.org/10.1016/j.cell.2017.05.016.CrossRefPubMedGoogle Scholar
  92. 92.
    Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13(7):513–32.  https://doi.org/10.1038/nrd4233.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346(6205):1248012.  https://doi.org/10.1126/science.1248012.CrossRefPubMedGoogle Scholar
  94. 94.
    Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–79.  https://doi.org/10.1038/nrm3470.CrossRefPubMedGoogle Scholar
  95. 95.
    Lai SL, Chien AJ, Moon RT. Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res. 2009;19(5):532–45.  https://doi.org/10.1038/cr.2009.41.CrossRefPubMedGoogle Scholar
  96. 96.
    van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136(19):3205–14.  https://doi.org/10.1242/dev.033910.CrossRefPubMedGoogle Scholar
  97. 97.
    Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141–9.  https://doi.org/10.1016/j.critrevonc.2015.12.005.CrossRefPubMedGoogle Scholar
  98. 98.
    Carmon KS, Gong X, Lin Q, Thomas A, Liu Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A. 2011;108(28):11452–7.  https://doi.org/10.1073/pnas.1106083108.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Surana R, Sikka S, Cai W, Shin EM, Warrier SR, Tan HJ, Arfuso F, Fox SA, Dharmarajan AM, Kumar AP. Secreted frizzled related proteins: implications in cancers. Biochim Biophys Acta. 2014;1845(1):53–65.  https://doi.org/10.1016/j.bbcan.2013.11.004.CrossRefPubMedGoogle Scholar
  100. 100.
    Liepinsh E, Banyai L, Patthy L, Otting G. NMR structure of the WIF domain of the human Wnt-inhibitory factor-1. J Mol Biol. 2006;357(3):942–50.  https://doi.org/10.1016/j.jmb.2006.01.047.CrossRefPubMedGoogle Scholar
  101. 101.
    Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006;25(57):7469–81.  https://doi.org/10.1038/sj.onc.1210054.CrossRefPubMedGoogle Scholar
  102. 102.
    Koury J, Zhong L, Hao J. Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int. 2017;2017:2925869.  https://doi.org/10.1155/2017/2925869.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 2011;474(7351):318–26.  https://doi.org/10.1038/nature10212.CrossRefGoogle Scholar
  104. 104.
    Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature. 2008;452(7187):650–3.  https://doi.org/10.1038/nature06835.CrossRefPubMedGoogle Scholar
  105. 105.
    Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13(1):11–26.  https://doi.org/10.1038/nrc3419.CrossRefPubMedGoogle Scholar
  106. 106.
    Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development. 2014;141(18):3445–57.  https://doi.org/10.1242/dev.083691.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Ryan KE, Chiang C. Hedgehog secretion and signal transduction in vertebrates. J Biol Chem. 2012;287(22):17905–13.  https://doi.org/10.1074/jbc.R112.356006.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.  https://doi.org/10.1101/gad.938601.CrossRefPubMedGoogle Scholar
  109. 109.
    Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell. 2008;15(6):801–12.  https://doi.org/10.1016/j.devcel.2008.11.010.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17(2):165–72.  https://doi.org/10.1016/j.cub.2006.11.033.CrossRefPubMedGoogle Scholar
  111. 111.
    Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H, Warmuth M. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 2008;14(3):238–49.  https://doi.org/10.1016/j.ccr.2008.08.003.CrossRefPubMedGoogle Scholar
  112. 112.
    Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, Munchhof M, VanArsdale T, Beachy PA, Reya T. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458(7239):776–9.  https://doi.org/10.1038/nature07737.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J, Devereux WL, Rhodes JT, Huff CA, Beachy PA, Watkins DN, Matsui W. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A. 2007;104(10):4048–53.  https://doi.org/10.1073/pnas.0611682104.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Justilien V, Walsh MP, Ali SA, Thompson EA, Murray NR, Fields AP. The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate Hedgehog signaling in lung squamous cell carcinoma. Cancer Cell. 2014;25(2):139–51.  https://doi.org/10.1016/j.ccr.2014.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, Ruiz i Altaba A. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med. 2009;1(6–7):338–51.  https://doi.org/10.1002/emmm.200900039.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Chiba S. Notch signaling in stem cell systems. Stem Cells. 2006;24(11):2437–47.  https://doi.org/10.1634/stemcells.2005-0661.CrossRefPubMedGoogle Scholar
  117. 117.
    Karamboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta. 2013;1830(2):2481–95.  https://doi.org/10.1016/j.bbagen.2012.11.008.CrossRefPubMedGoogle Scholar
  118. 118.
    Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11(5):338–51.  https://doi.org/10.1038/nrc3035.CrossRefPubMedGoogle Scholar
  119. 119.
    van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435(7044):959–63.  https://doi.org/10.1038/nature03659.CrossRefPubMedGoogle Scholar
  120. 120.
    Abel EV, Kim EJ, Wu J, Hynes M, Bednar F, Proctor E, Wang L, Dziubinski ML, Simeone DM. The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS One. 2014;9(3):e91983.  https://doi.org/10.1371/journal.pone.0091983.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Wang Z, Da Silva TG, Jin K, Han X, Ranganathan P, Zhu X, Sanchez-Mejias A, Bai F, Li B, Fei DL, Weaver K, Carpio RV, Moscowitz AE, Koshenkov VP, Sanchez L, Sparling L, Pei XH, Franceschi D, Ribeiro A, Robbins DJ, Livingstone AS, Capobianco AJ. Notch signaling drives stemness and tumorigenicity of esophageal adenocarcinoma. Cancer Res. 2014;74(21):6364–74.  https://doi.org/10.1158/0008-5472.CAN-14-2051.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, Bundred NJ. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst. 2007;99(8):616–27.  https://doi.org/10.1093/jnci/djk133.CrossRefPubMedGoogle Scholar
  123. 123.
    Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33(3):416–21.  https://doi.org/10.1038/ng1099.CrossRefPubMedGoogle Scholar
  124. 124.
    Ramos A, Camargo FD. The Hippo signaling pathway and stem cell biology. Trends Cell Biol. 2012;22(7):339–46.  https://doi.org/10.1016/j.tcb.2012.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24(11):1106–18.  https://doi.org/10.1101/gad.1903310.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Wang Y, Yu A, Yu FX. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell. 2017;8(5):349–59.  https://doi.org/10.1007/s13238-017-0371-0.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29(6):783–803.  https://doi.org/10.1016/j.ccell.2016.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Bae JS, Kim SM, Lee H. The Hippo signaling pathway provides novel anti-cancer drug targets. Oncotarget. 2017;8(9):16084–98.  https://doi.org/10.18632/oncotarget.14306.CrossRefPubMedGoogle Scholar
  129. 129.
    Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759–72.  https://doi.org/10.1016/j.cell.2011.09.048.CrossRefPubMedGoogle Scholar
  130. 130.
    Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G, Benedetto AD, Todaro M, Stassi G, Sperati F, Amabile MI, Pilozzi E, Patrizii M, Biffoni M, Maugeri-Sacca M, Piccolo S, De Maria R. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015;34(6):681–90.  https://doi.org/10.1038/onc.2014.5.CrossRefPubMedGoogle Scholar
  131. 131.
    Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol. 2011;70(7):568–77.  https://doi.org/10.1097/NEN.0b013e31821ff8d8.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Hu X, Xin Y, Xiao Y, Zhao J. Overexpression of YAP1 is correlated with progression, metastasis and poor prognosis in patients with gastric carcinoma. Pathol Oncol Res. 2014;20(4):805–11.  https://doi.org/10.1007/s12253-014-9757-y.CrossRefPubMedGoogle Scholar
  133. 133.
    Touil Y, Igoudjil W, Corvaisier M, Dessein AF, Vandomme J, Monte D, Stechly L, Skrypek N, Langlois C, Grard G, Millet G, Leteurtre E, Dumont P, Truant S, Pruvot FR, Hebbar M, Fan F, Ellis LM, Formstecher P, Van Seuningen I, Gespach C, Polakowska R, Huet G. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clinical cancer research: an official journal of the American Association for. Cancer Res. 2014;20(4):837–46.  https://doi.org/10.1158/1078-0432.CCR-13-1854.CrossRefGoogle Scholar
  134. 134.
    Lai D, Ho KC, Hao Y, Yang X. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 2011;71(7):2728–38.  https://doi.org/10.1158/0008-5472.CAN-10-2711.CrossRefPubMedGoogle Scholar
  135. 135.
    Sakaki-Yumoto M, Katsuno Y, Derynck R. TGF-beta family signaling in stem cells. Biochim Biophys Acta. 2013;1830(2):2280–96.  https://doi.org/10.1016/j.bbagen.2012.08.008.CrossRefPubMedGoogle Scholar
  136. 136.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.CrossRefGoogle Scholar
  137. 137.
    Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19(23):2783–810.  https://doi.org/10.1101/gad.1350705.CrossRefPubMedGoogle Scholar
  138. 138.
    Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30.  https://doi.org/10.1038/nrm3434.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Papageorgis P. TGFbeta signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol. 2015;2015:587193.  https://doi.org/10.1155/2015/587193.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Levy L, Hill CS. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17(1–2):41–58.  https://doi.org/10.1016/j.cytogfr.2005.09.009.CrossRefPubMedGoogle Scholar
  141. 141.
    Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268–74.  https://doi.org/10.1126/science.1133427.CrossRefPubMedGoogle Scholar
  142. 142.
    Lebrun JJ. The dual role of TGFbeta in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol. 2012;2012:381428.  https://doi.org/10.5402/2012/381428.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Colak S, Ten Dijke P. Targeting TGF-beta signaling in cancer. Trends Cancer. 2017;3(1):56–71.  https://doi.org/10.1016/j.trecan.2016.11.008.CrossRefPubMedGoogle Scholar
  144. 144.
    Lu H, Chen I, Shimoda LA, Park Y, Zhang C, Tran L, Zhang H, Semenza GL. Chemotherapy-Induced Ca(2+) release stimulates breast cancer stem cell enrichment. Cell Rep. 2017;18(8):1946–57.  https://doi.org/10.1016/j.celrep.2017.02.001.CrossRefPubMedGoogle Scholar
  145. 145.
    Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL, Hashida S, Maki Y, Ichihara E, Asano H, Tsukuda K, Takigawa N, Kiura K, Gazdar AF, Lam WL, Miyoshi S. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res. 2013;73(10):3051–61.  https://doi.org/10.1158/0008-5472.CAN-12-4136.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek J Jr, Fischer W, Lukas J, Rich JN, Bartek J. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med. 2012;209(3):507–20.  https://doi.org/10.1084/jem.20111424.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Auffinger B, Tobias AL, Han Y, Lee G, Guo D, Dey M, Lesniak MS, Ahmed AU. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 2014;21(7):1119–31.  https://doi.org/10.1038/cdd.2014.31.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.  https://doi.org/10.1038/nature07733.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Lim YC, Roberts TL, Day BW, Harding A, Kozlov S, Kijas AW, Ensbey KS, Walker DG, Lavin MF. A role for homologous recombination and abnormal cell-cycle progression in radioresistance of glioma-initiating cells. Mol Cancer Ther. 2012;11(9):1863–72.  https://doi.org/10.1158/1535-7163.MCT-11-1044.CrossRefPubMedGoogle Scholar
  150. 150.
    Yuan M, Eberhart CG, Kai M. RNA binding protein RBM14 promotes radio-resistance in glioblastoma by regulating DNA repair and cell differentiation. Oncotarget. 2014;5(9):2820–6.  https://doi.org/10.18632/oncotarget.1924.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Liu Y, Burness ML, Martin-Trevino R, Guy J, Bai S, Harouaka R, Brooks MD, Shang L, Fox A, Luther TK, Davis A, Baker TL, Colacino J, Clouthier SG, Shao ZM, Wicha MS, Liu S. RAD51 mediates resistance of cancer stem cells to PARP inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23(2):514–22.  https://doi.org/10.1158/1078-0432.CCR-15-1348.CrossRefPubMedGoogle Scholar
  152. 152.
    Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells. Cancer Res. 2015;75(20):4416–28.  https://doi.org/10.1158/0008-5472.CAN-14-3790.CrossRefPubMedGoogle Scholar
  153. 153.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.  https://doi.org/10.1038/nature05236.CrossRefPubMedGoogle Scholar
  154. 154.
    Di Stefano AB, Iovino F, Lombardo Y, Eterno V, Hoger T, Dieli F, Stassi G, Todaro M. Survivin is regulated by interleukin-4 in colon cancer stem cells. J Cell Physiol. 2010;225(2):555–61.  https://doi.org/10.1002/jcp.22238.CrossRefPubMedGoogle Scholar
  155. 155.
    Jin F, Zhao L, Zhao HY, Guo SG, Feng J, Jiang XB, Zhang SL, Wei YJ, Fu R, Zhao JS. Comparison between cells and cancer stem-like cells isolated from glioblastoma and astrocytoma on expression of anti-apoptotic and multidrug resistance-associated protein genes. Neuroscience. 2008;154(2):541–50.  https://doi.org/10.1016/j.neuroscience.2008.03.054.CrossRefPubMedGoogle Scholar
  156. 156.
    Capper D, Gaiser T, Hartmann C, Habel A, Mueller W, Herold-Mende C, von Deimling A, Siegelin MD. Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathol. 2009;117(4):445–56.  https://doi.org/10.1007/s00401-009-0494-3.CrossRefPubMedGoogle Scholar
  157. 157.
    Piggott L, Omidvar N, Marti Perez S, French R, Eberl M, Clarkson RW. Suppression of apoptosis inhibitor c-FLIP selectively eliminates breast cancer stem cell activity in response to the anti-cancer agent, TRAIL. Breast Cancer Res. 2011;13(5):R88.  https://doi.org/10.1186/bcr2945.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Di C, Zhao Y. Multiple drug resistance due to resistance to stem cells and stem cell treatment progress in cancer (Review). Exp Ther Med. 2015;9(2):289–93.  https://doi.org/10.3892/etm.2014.2141.CrossRefPubMedGoogle Scholar
  159. 159.
    Karthikeyan S, Hoti SL. Development of fourth generation ABC inhibitors from natural products: a novel approach to overcome cancer multidrug resistance. Anti Cancer Agents Med Chem. 2015;15(5):605–15.CrossRefGoogle Scholar
  160. 160.
    Chan KS. Molecular pathways: targeting cancer stem cells awakened by chemotherapy to abrogate tumor repopulation. Clin Cancer Res. 2016;22(4):802–6.  https://doi.org/10.1158/1078-0432.CCR-15-0183.CrossRefPubMedGoogle Scholar
  161. 161.
    Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141(4):583–94.  https://doi.org/10.1016/j.cell.2010.04.020.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci-Vitiani L, Gulotta G, Dieli F, de Maria R, Stassi G. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology. 2011;140(1):297–309.  https://doi.org/10.1053/j.gastro.2010.10.005.CrossRefPubMedGoogle Scholar
  163. 163.
    Tate CM, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, Ricci-Vitiani L, D’Alessandris QG, Morgante L, Giannetti S, Larocca LM, Todaro M, Benfante A, Colorito ML, Stassi G, De Maria R, Rowlinson S, Stancato L. A BMP7 variant inhibits tumor angiogenesis in vitro and in vivo through direct modulation of endothelial cell biology. PLoS One. 2015;10(4):e0125697.  https://doi.org/10.1371/journal.pone.0125697.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Nowak D, Stewart D, Koeffler HP. Differentiation therapy of leukemia: 3 decades of development. Blood. 2009;113(16):3655–65.  https://doi.org/10.1182/blood-2009-01-198911.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Liu CC, Lin JH, Hsu TW, Su K, Li AF, Hsu HS, Hung SC. IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int J Cancer. 2015;136(3):547–59.  https://doi.org/10.1002/ijc.29033.CrossRefPubMedGoogle Scholar
  166. 166.
    Pathania R, Ramachandran S, Elangovan S, Padia R, Yang P, Cinghu S, Veeranan-Karmegam R, Arjunan P, Gnana-Prakasam JP, Sadanand F, Pei L, Chang CS, Choi JH, Shi H, Manicassamy S, Prasad PD, Sharma S, Ganapathy V, Jothi R, Thangaraju M. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun. 2015;6:6910.  https://doi.org/10.1038/ncomms7910.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Toh TB, Lim JJ, Chow EK. Epigenetics in cancer stem cells. Mol Cancer. 2017;16(1):29.  https://doi.org/10.1186/s12943-017-0596-9.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001;20(24):6969–78.  https://doi.org/10.1093/emboj/20.24.6969.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Schech A, Kazi A, Yu S, Shah P, Sabnis G. Histone deacetylase inhibitor entinostat inhibits tumor-initiating cells in triple-negative breast cancer cells. Mol Cancer Ther. 2015;14(8):1848–57.  https://doi.org/10.1158/1535-7163.MCT-14-0778.CrossRefPubMedGoogle Scholar
  170. 170.
    Menendez JA, Alarcon T. Metabostemness: a new cancer hallmark. Front Oncol. 2014;4:262.  https://doi.org/10.3389/fonc.2014.00262.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59.  https://doi.org/10.1016/j.cell.2009.06.034.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, Glasauer A, Dufour E, Mutlu GM, Budigner GS, Chandel NS. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. elife. 2014;3:e02242.  https://doi.org/10.7554/eLife.02242.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, Gantt GA Jr, Sukhdeo K, DeVecchio J, Vasanji A, Leahy P, Hjelmeland AB, Kalady MF, Rich JN. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210(13):2851–72.  https://doi.org/10.1084/jem.20131195.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov. 2016;15(5):311–25.  https://doi.org/10.1038/nrd.2015.13.CrossRefPubMedGoogle Scholar
  175. 175.
    Wu Y, Chen M, Wu P, Chen C, Xu ZP, Gu W. Increased PD-L1 expression in breast and colon cancer stem cells. Clin Exp Pharmacol Physiol. 2017;44(5):602–4.  https://doi.org/10.1111/1440-1681.12732.CrossRefPubMedGoogle Scholar
  176. 176.
    Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, Sperduti I, Di Franco S, Meraviglia S, Lo Presti E, Dieli F, Caputo V, Militello G, Vieni S, Stassi G, Todaro M. IL4 primes the dynamics of breast cancer progression via DUSP4 inhibition. Cancer Res. 2017;77(12):3268–79.  https://doi.org/10.1158/0008-5472.CAN-16-3126.CrossRefPubMedGoogle Scholar
  177. 177.
    Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D, Hewitt S, Udupi GM, Gallagher WM, Wegner C, West BL, Wang-Gillam A, Goedegebuure P, Linehan DC, DeNardo DG. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73(3):1128–41.  https://doi.org/10.1158/0008-5472.CAN-12-2731.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alice Turdo
    • 1
  • Miriam Gaggianesi
    • 1
  • Aurora Chinnici
    • 1
  • Giorgio Stassi
    • 1
  • Matilde Todaro
    • 2
  1. 1.Department of SurgicalOncological and Stomatological Sciences, University of PalermoPalermoItaly
  2. 2.Department of DIBIMISUniversity of Palermo, Laboratory of Cellular and Molecular PathophysiologyPalermoItaly

Personalised recommendations