Learning Curve for Robot- and Computer-Assisted Knee and Hip Arthroplasty

  • Jason P. Zlotnicki
  • Michael J. O’Malley


The use of robotic-assisted surgery in hip and knee arthroplasty has grown over the past decade as interest and literature support burgeon. With the implementation of new technologies in surgical practice, a period of time or number of surgical procedures, also known as a “learning curve”, exists in which surgeons and staff become proficient in the steps and nuance of this technology in order to maximize efficiency and patient benefit. This chapter serves to outline the history of robotic implementation, the main clinical applications in orthopaedic surgery, and the associated learning curve of this new technology.


Robot arthroplasty Navigation in arthroplasty Arthroplasty Hip arthroplasty Knee arthroplasty Robotic-assisted surgery 


  1. 1.
    Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, Seyler TM, Jinnah RH. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br. 2011;93(10):1296–9.CrossRefGoogle Scholar
  2. 2.
    Bumpass DB, Nunley RM. Assessing the value of a total joint replacement. Curr Rev Musculoskelet Med. 2012;5(4):274–82.CrossRefGoogle Scholar
  3. 3.
    Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370(9597):1508–19.CrossRefGoogle Scholar
  4. 4.
    Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87(7):1487–97.PubMedGoogle Scholar
  5. 5.
    Liu HX, Shang P, Ying XZ, Zhang Y. Shorter survival rate in varus-aligned knees after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24(8):2663–71.CrossRefGoogle Scholar
  6. 6.
    Li Z, Esposito CI, Koch CN, Lee YY, Padgett DE, Wright TM. Polyethylene Damage Increases With varus Implant Alignment in Posterior-stabilized and Constrained Condylar Knee Arthroplasty. Clin Orthop Relat Res. 2017;475(12):2981–91.CrossRefGoogle Scholar
  7. 7.
    Ritter MA, Davis KE, Davis P, Farris A, Malinzak RA, Berend ME, Meding JB. Preoperative malalignment increases risk of failure after total knee arthroplasty. J Bone Joint Surg Am. 2013;95(2):126–31.CrossRefGoogle Scholar
  8. 8.
    Lonner JH, Smith JR, Picard F, Hamlin B, Rowe PJ, Riches PE. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study. Clin Orthop Relat Res. 2015;473(1):206–12.CrossRefGoogle Scholar
  9. 9.
    Moon YW, Ha CW, Do KH, Kim CY, Han JH, Na SE, Lee CH, Kim JG, Park YS. Comparison of robot-assisted and conventional total knee arthroplasty: a controlled cadaver study using multiparameter quantitative three-dimensional CT assessment of alignment. Comput Aided Surg. 2012;17(2):86–95.CrossRefGoogle Scholar
  10. 10.
    Cheng T, Zhao S, Peng X, Zhang X. Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials? Knee Surg Sports Traumatol Arthrosc. 2012;20(7):1307–22.CrossRefGoogle Scholar
  11. 11.
    Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB. Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res. 2014;472(1):329–36.CrossRefGoogle Scholar
  12. 12.
    Kamara E, Robinson J, Bas MA, Rodriguez JA, Hepinstall MS. Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty: is acetabular positioning improved in the learning curve? J Arthroplast. 2017 Jan;32(1):125–30.CrossRefGoogle Scholar
  13. 13.
    Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res. 2013 Jan;471(1):118–26.CrossRefGoogle Scholar
  14. 14.
    Netravali NA, Shen F, Park Y, Bargar WL. A perspective on robotic assistance for knee arthroplasty. Adv Orthop. 2013 Epub 2013 Apr 30.CrossRefGoogle Scholar
  15. 15.
    Jacofsky DJ, Allen M. Robotics in Arthroplasty: a comprehensive review. J Arthroplast. 2016;31(10):2353–63.CrossRefGoogle Scholar
  16. 16.
    Coon TM. Integrating robotic technology into the operating room. Am J Orthop. 2009;38(2):7–9.PubMedGoogle Scholar
  17. 17.
    Park SE, Lee CT. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplast. 2007;22(7):1054–9.CrossRefGoogle Scholar
  18. 18.
    Schulz AP, Seide K, Queitsch C, von Haugwitz A, Meiners J, Kienast B, Tarabolsi M, Kammal M, Jürgens C. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot. 2007;3(4):301–6.CrossRefGoogle Scholar
  19. 19.
    Liow MH, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplast. 2014;29(12):2373–7.CrossRefGoogle Scholar
  20. 20.
    Alcelik IA, Blomfield MI, Diana G, Gibbon AJ, Carrington N, Burr S. A comparison of short-term outcomes of minimally invasive computer-assisted vs minimally invasive conventional instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty. 2016;31(2):410–8.CrossRefGoogle Scholar
  21. 21.
    Wallace D, Gregori A, Picard, Frederic & Bellemans, Johan & Lonner, Jess & Marquez, Raul & McWee (Smith, Julie & Simone, Adam & Jaramaz, Branislav. The learning curve of a novel handheld robotic system for unicondylar knee arthroplasty. J Bone and Joint Surg – British. 2014;96-B:13.Google Scholar
  22. 22.
    Jinnah R, Horowitz S, Lippencott C, Conditt M. Learning curve of robotically assisted UKA. In: International meeting on early intervention for knee arthritis (IMUKA), 56th Annual Meeting of the Orthopaedic Research Society; 2009.Google Scholar
  23. 23.
    Simons M, Riches P. The learning curve of robotically-assisted unicondylar knee arthroplasty. Bone Joint J. 2014;96(SUPP 11):152.Google Scholar
  24. 24.
    O’Malley M, Gregori A, Picard F, Jaramaz B, Lonner J. The learning curve of an image-free handheld robotic system for unicompartmental knee arthroplasty. Poster presented at AAOS 2017 annual meeting, San Diego, 14–18 Mar 2017.Google Scholar
  25. 25.
    Sodhi N, Khlopas A, Piuzzi NS, Sultan AA, Marchand RC, Malkani AL, Mont MA. The learning curve associated with robotic total knee arthroplasty. J Knee Surg. 2018;31(1):17–21.CrossRefGoogle Scholar
  26. 26.
    Khlopas A, Sodhi N, Sultan AA, Chughtai M, Molloy RM, Mont MA. Robotic arm assisted total knee arthroplasty. J Arthroplast. 2018; Scholar
  27. 27.
    Karia M, Masjedi M, Andrews B, Jaffry Z, Cobb J. Robotic assistance enables inexperienced surgeons to perform unicompartmental knee arthroplasties on dry bone models with accuracy superior to conventional methods. Adv Orthop. 2013. Epub 2013 Jun 19.CrossRefGoogle Scholar
  28. 28.
    Redmond JM, Gupta A, Hammarstedt JE, Petrakos AE, Finch NA, Domb BG. The learning curve associated with robotic-assisted total hip arthroplasty. J Arthroplast. 2015;30(1):50–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jason P. Zlotnicki
    • 1
  • Michael J. O’Malley
    • 2
  1. 1.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA
  2. 2.Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations