Advertisement

Design of Nano-Chitosans for Tissue Engineering and Molecular Release

  • Sheriff Adewuyi
  • Iriczalli Cruz-Maya
  • Onome Ejeromedoghene
  • Vincenzo GuarinoEmail author
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 36)

Abstract

The design of biopolymers such as chitosan is currently a major activity in biomedicine and nanomedicine to fabricate innovative medical devices suitable for therapeutic, diagnostic and orteranostic use. Indeed, the peculiar properties of chitosan such as mucoadhesivity and pH sensitivity make chitosan suitable for drug delivery systems. Chitosan can also be manipulated at the nanoscale, in terms of characteristic size, surface morphology and composition, for the fabrication of nanodevices or nanochitosans with improved properties in comparison with bulk materials of micrometric size. This chapter reviews current uses of chitosan for the fabrication of nanodevices suitable for biomedical applications. We describe the main processing routes used to fabricate smart devices at the nanometric size. Recent applications of nano-chitosans in the form of fibres, particles or capsules for in tissue engineering and drug delivery are then presented. We emphasize the role of additive materials such as magnetic particles with specific functionalities that are able to improve, to control and to guide molecular release in vitro and in vivo.

Keywords

Nanofibers Nanoparticles Electrofluidodynamics Magnetic Response Biomedical applications 

Abbreviations

NFs

Nanofibres

NPs

Nanoparticles

NDs

Nanodevices

DDA

Degree of Deacetylation

LMW

Low Molecular Weight

NCs

Nanochitosans

TPP

Tripolyphosphate

EDFs

Electrofluidodynamic

DNA

Deoxyribonucleic Acid

BMPs

Bone Morphogenetic Proteins

MFC-7

Michigan Cancer Foundation-7

MNPs

Magnetic Nanoparticles

CPA

Cyclophosphamide

DDS

Drug Delivery Service

β-CD

β-Cyclodextrin

References

  1. Acharyulu SR, Gomathi T, Sudha PN (2013) Synthesis and characterization of cross-linked chitosan-polystyrene polymer blends. Der Pharm Lett 5:74–83Google Scholar
  2. Adewuyi S, Sanyaolu NO, Amolegbe SA, Sobola AO, Folarin OM (2012) Poly [β-(1-4)-2-amino-2-deoxy-D-glucopyranose] based zero valent nickel nanocomposite for efficient reduction of nitrate in water. J Environ Sci 24:1702–1708.  https://doi.org/10.1016/S1001-0742(11)60903-0 CrossRefGoogle Scholar
  3. Adewuyi S, Bisiriyu IO, Akinremi CA, Amolegbe SA (2017) Synthesis, spectroscopic, surface and catalytic reactivity of chitosan supported Co(ii) and its zerovalent cobalt nanobiocomposite. J Inorg Organomet Polym Mater 27:114–121.  https://doi.org/10.1007/s10904-016-0452-1 CrossRefGoogle Scholar
  4. Agnihotri SA, Aminabhavi TM (2007) Chitosan nanoparticles for prolonged delivery of timolol maleate. Drug Dev Ind Pharm 33:1254–1262.  https://doi.org/10.1080/03639040701384942 CrossRefPubMedGoogle Scholar
  5. Akinremi CA, Omosun NN, Adewuyi S, Azeez JO, Sanyaolu NO (2016) Preparation and characterization of chitosan-humic acid-zerovalent iron nanocomposite for nitrate reduction in water. J Appl Chem 2016:1–8.  https://doi.org/10.1155/2016/1895854 CrossRefGoogle Scholar
  6. Al-Remawin MMA (2012) Properties of chitosan nanoparticles formed using sulfate anions as crosslinking bridges. Am J Appl Sci 9:1091–1100.  https://doi.org/10.3844/ajassp.2012.1091.1100 CrossRefGoogle Scholar
  7. Altobelli R, Guarino V, Ambrosio L (2016) Micro and nanocarriers by electrofluidodynamics for cell and molecular therapies. Process Biochem 51:2143–2154.  https://doi.org/10.1016/j.procbio.2016.09.002 CrossRefGoogle Scholar
  8. Anderson VJ, Jones RAL (2001) The influence of gelation on the mechanism of phase separation of a biopolymer mixture. Polymer 42:9601–9610.  https://doi.org/10.1016/S0032-3861(01)00479-7 CrossRefGoogle Scholar
  9. Anirudhan HS, Divya HL, Nima J (2015) Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin. Chem Eng J 284:1259–1269.  https://doi.org/10.1016/j.cej.2015.09.057 CrossRefGoogle Scholar
  10. Anto SM, Kannan C, Kumar KS, Kumar SV, Suganeshwari M (2011) Formulation of 5-fluorouracil loaded chitosan nanoparticles by emulsion droplet coalescence method for cancer therapy. Int J Pharm Biol Arch 2:926–931Google Scholar
  11. Assa F, Jafari-Malmiri H, Ajamein H, Vaghari H, Anarjan N, Ahmadi O, Berenjian A (2017) Chitosan magnetic nanoparticles for drug delivery systems. Crit Rev Biotechnol 37:492–509.  https://doi.org/10.1080/07388551.2016.1185389 CrossRefPubMedGoogle Scholar
  12. Atyabi F, Talaie F, Dinarvand R (2009) Thiolated chitosan nanoparticles as an oral delivery system for Amikacin: in vitro and ex vivo evaluations. J Nanosci Nanotechnol 9:4593–4603.  https://doi.org/10.1166/jnn.2009.1090 CrossRefPubMedGoogle Scholar
  13. Avadi MR, Sadeghi AM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, Rafiee-Tehrani M (2010) Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine 6:58–63.  https://doi.org/10.1016/j.nano.2009.04.007 CrossRefPubMedGoogle Scholar
  14. Barreiro-Iglesias R, Coronilla R, Concheiro A, Alvarez-Lorenzo C (2005) Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH. Rheological optimisation and drug loading/release behavior. Eur J Pharm Sci 24:77–84.  https://doi.org/10.1016/j.ejps.2004.09.013 CrossRefPubMedGoogle Scholar
  15. Bayat A, Larijani B, Ahmadian S, Junginger HE, Rafiee-Tehrani M (2008) Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. Nanomedicine 4:115–120.  https://doi.org/10.1016/j.nano.2008.01.003 CrossRefPubMedGoogle Scholar
  16. Behbood L, Karimi S, Mirzaei E, Mohammadi G, Azami M, Arkan E (2018) Mucoadhesive chitosan electrospun nanofibers containing tetracycline and triamcinolone as a drug delivery system. Fibers Polym 19:1454–1462.  https://doi.org/10.1007/s12221-018-8087-1 CrossRefGoogle Scholar
  17. Benamer W, Cellesi F, Tirelli N (2018) Chitosan/β-glycerophosphate-based microparticles manufactured by laminar jet break-up technology. J Microencapsul 9:1–14.  https://doi.org/10.1080/02652048.2018.1515996 CrossRefGoogle Scholar
  18. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469.  https://doi.org/10.1016/j.ejpb.2012.04.007 CrossRefPubMedGoogle Scholar
  19. Borges O, Borchard G, Verhoef JC, de Sousa A, Junginger HE (2005) Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm 299:155–166.  https://doi.org/10.1016/j.ijpharm.2005.04.037 CrossRefPubMedGoogle Scholar
  20. Bouchemal K, Briançon S, Perrier E, Fessi H (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm 280:241–251.  https://doi.org/10.1016/j.ijpharm.2004.05.016 CrossRefPubMedGoogle Scholar
  21. Bronstein LM, Chernyshov DM, Volkov IO, Ezernitskaya MG, Valetsky PM, Matveeva VG, Sulman EM (2000) Structure and properties of bimetallic colloids formed in polystyrene-block-poly-4-vinylpyridine micelles: catalytic behavior in selective hydrogenation of dehydrolinalool. J Catal 196:302–307.  https://doi.org/10.1006/jcat.2000.3039 CrossRefGoogle Scholar
  22. Chakraborty S, Liao IC, Adler A, Leong KW (2009) Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61:1043–1054.  https://doi.org/10.1016/j.addr.2009.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chandy T, Sharmam CP (1992) Chitosan beads and granules for oral sustained delivery of nifedipine. Biomaterials 13:949–952.  https://doi.org/10.1016/0142-9612(92)90119-9 CrossRefPubMedGoogle Scholar
  24. Chang Y, Xiao L (2010) Preparation and characterization of a novel drug delivery system: biodegradable nanoparticles in thermosensitive chitosan/gelatin blend hydrogels. J Macromol Sci Part A Pure Appl Chem 47:608–615.  https://doi.org/10.1080/10601321003742147 CrossRefGoogle Scholar
  25. Chen Z, Wang L, Stegemann JP (2011) Phase-separated chitosan–fibrin microbeads for cell delivery. J Microencapsul 28:344–352.  https://doi.org/10.3109/02652048.2011.569764 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chenite A, Chaput C, Combes C, Selmani A, Jalal F (2002) Temperature-controlled pH-dependent formation of ionic polysaccharide gels. 6344488 B1. U.S. PatentGoogle Scholar
  27. Cooper A, Jana S, Bhattarai N, Zhang M (2010) Aligned chitosan-based nanofibers for enhanced myogenesis. J Mater Chem 20:8904–8911.  https://doi.org/10.1039/c0jm01841d CrossRefGoogle Scholar
  28. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792.  https://doi.org/10.1016/j.eurpolymj.2012.12.009 CrossRefGoogle Scholar
  29. Dilamian M, Montazer M, Masoumi J (2013) Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylenebiguanide) hydrochloride. Carbohydr Polym 94:364–371.  https://doi.org/10.1016/j.carbpol.2013.01.059 CrossRefPubMedGoogle Scholar
  30. Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15:1945–1951.  https://doi.org/10.1021/la980971g CrossRefGoogle Scholar
  31. Du J, Sun R, Zhang S, Govender T, Zhang LF, Xiong CD, Peng YX (2004) Novel polyelectrolyte carboxymethylkonjacglucomannanchitosan nanoparticles for drug delivery. Macromol Rapid Commun 25:954–958.  https://doi.org/10.1002/marc.200300314 CrossRefGoogle Scholar
  32. Ejeromedoghene O, S A, Amolegbe SA, Akinremi CA, Moronkola BA, Salaudeen T (2018) Electrovalent chitosan functionalized methyl-orange/metal nanocomposites as chemosensors for toxic aqueous anions. Nano Struct Nano Objects 16:174–179.  https://doi.org/10.1016/j.nanoso.2018.06.004 CrossRefGoogle Scholar
  33. Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers – a review. Mater Sci Eng C 32:1711–1726.  https://doi.org/10.1016/j.msec.2012.05.009 CrossRefGoogle Scholar
  34. El-Shabouri MH (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249:101–108.  https://doi.org/10.1016/S0378-5173(02)00461-1 CrossRefPubMedGoogle Scholar
  35. Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces 90:21–27.  https://doi.org/10.1016/j.colsurfb.2011.09.042 CrossRefPubMedGoogle Scholar
  36. Felton C, Karmakar A, Gartia Y, Ramidi P, Biris AS, Ghosh A (2014) Magnetic nanoparticles as contrast agents in biomedical imaging: recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metab Rev 46:142–154.  https://doi.org/10.3109/03602532.2013.876429 CrossRefPubMedGoogle Scholar
  37. Galhoum AA, Mafhouz MG, Abdel-Rehem ST, Gomaa NA, Atia AA, Vincent T, Guibal E (2015) Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of light and heavy rare earth metals: uptake kinetics and sorption isotherms. Nanomaterials 5:154–179.  https://doi.org/10.3390/nano5010154 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432.  https://doi.org/10.1016/j.biomaterials.2005.01.066 CrossRefPubMedGoogle Scholar
  39. Ghadri N, Anderson KM, Pradeep A, Stein SH, Su H, Garcia-Godoy F, Karydis A, Bumgardner JD (2018) Evaluation of bone regeneration of simvastatin loaded chitosan nanofiber membranes in rodent calvarial defects. J Biomat Nanotechnol 9:210–231.  https://doi.org/10.4236/jbnb.2018.92012 CrossRefGoogle Scholar
  40. Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20:291–300.  https://doi.org/10.3109/1061186X.2011.654121 CrossRefPubMedGoogle Scholar
  41. Grenha A, Al-Qadi S, Seijo B, Remuñán-Lopez C (2010) The potential of chitosan for pulmonary drug delivery. J Drug Delivery Sci Technol 20:33–43.  https://doi.org/10.1016/S1773-2247(10)50004-2 CrossRefGoogle Scholar
  42. Guarino V, Khodir WK, Ambrosio L (2012) Biodegradable microparticles and nanoparticles by electrospraying techniques. J Appl Biomater Funct Mater 10:191–196.  https://doi.org/10.5301/JABFM.2012.10369 CrossRefPubMedGoogle Scholar
  43. Guarino V, Cirillo V, Altobelli R, Ambrosio L (2015) Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy. Expert Rev Med Devices 12:113–129.  https://doi.org/10.1586/17434440.2014.953058 CrossRefPubMedGoogle Scholar
  44. Guarino V, Altobelli R, Ambrosio L (2016) Chitosan microgels and nanoparticles via electrofluidodynamic techniques for biomedical applications. Gels 2:2.  https://doi.org/10.3390/gels2010002 CrossRefPubMedCentralGoogle Scholar
  45. Guarino V, Cruz-Maya I, Altobelli R, Khodir WK, Ambrosio L, Alvarez-Perez MA, Almaguer-Flores A (2017) Electrospun polycaprolactone nanofibres decorated by drug loaded chitosan nano-reservoirs for antibacterial treatments. Nanotechnology 28:505103.  https://doi.org/10.1088/1361-6528/aa9542 CrossRefPubMedGoogle Scholar
  46. Guarino V, Ausanio G, Lannotti V, Ambrosio L, Lanotte L (2018) Electrospun nanofiber tubes with elastomagnetic properties for biomedical use. Express Polym Lett 12:318–329.  https://doi.org/10.3144/expresspolymlett.2018.28 CrossRefGoogle Scholar
  47. Hasegawa M, Isogai A, Onabe F, Usuda M (1992) Dissolving states of cellulose and chitosan in trifluoroacetic acid. J Appl Polym Sci 45:1857–1863.  https://doi.org/10.1002/app.1992.070451020 CrossRefGoogle Scholar
  48. Hasheminejad N, Khodaiyan F, Safari M (2018) Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem 275:113–122.  https://doi.org/10.1016/j.foodchem.2018.09.085 CrossRefPubMedGoogle Scholar
  49. Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661.  https://doi.org/10.1016/j.carbpol.2009.02.008 CrossRefGoogle Scholar
  50. Honary S, Ebrahimi P, Rad HA, Asgari M (2013) Optimization of preparation of chitosan-coated iron oxide nanoparticles for biomedical applications by chemometrics approaches. Int Nano Lett 3:48.  https://doi.org/10.1186/2228-5326-3-48 CrossRefGoogle Scholar
  51. Hsiao SW, Thien DV, Ho MH, Hsieh HJ, Li CH, Hung CH, Li HH (2010) Interactions between chitosan and cells measured by AFM. Biomed Mater 5:054117.  https://doi.org/10.1088/1748-6041/5/5/054117 CrossRefPubMedGoogle Scholar
  52. Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C (2002) Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials 23:3193–3201.  https://doi.org/10.1016/S0142-9612(02)00071-6 CrossRefPubMedGoogle Scholar
  53. Hu Y, Ding Y, Sun M, Zhang L, Jiang X, Yang C (2007) Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers. Biomacromolecules 8:1069–1076.  https://doi.org/10.1021/bm0608176 CrossRefPubMedGoogle Scholar
  54. Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X (2011) Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B Biointerfaces 82:307–315.  https://doi.org/10.1016/j.colsurfb.2010.09.002 CrossRefPubMedGoogle Scholar
  55. Hussein-Al-Ali SH, Kura A, Hussein MZ, Fakurazi S (2016) Preparation of chitosan nanoparticles as a drug delivery system for perindopril erbumine. Polym Compos 39:544–552.  https://doi.org/10.1002/pc.23967 CrossRefGoogle Scholar
  56. Kaihara S, Suzuki Y, Fujimoto K (2011) In situ synthesis of polysaccharide nanoparticles via polyion complex of carboxymethyl cellulose and chitosan. Colloids Surf B Biointerfaces 85:343–348.  https://doi.org/10.1016/j.colsurfb.2011.03.008 CrossRefPubMedGoogle Scholar
  57. Karimi A, Karbasi S, Razavi S, Zargar EN (2018) Poly(hydroxybutyrate)/chitosan aligned electrospun scaffold as a novel substrate for nerve tissue engineering. Adv Biomed Res 7:44.  https://doi.org/10.4103/abr.abr_277_16 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Karnchanajindanun J, Srisa-ard M, Srihanam P, Baimark Y (2010) Preparation and characterization of genipin-cross-linked chitosan microparticles by water-in-oil emulsion solvent diffusion method. Nat Sci 02:1061–1065.  https://doi.org/10.4236/ns.2010.210131 CrossRefGoogle Scholar
  59. Khodir WK, Guarino V, Alvarez-Perez MA, Cafiero C, Ambrosio L (2013) Trapping tetracycline-loaded nanoparticles into polycaprolactone fiber networks for periodontal regeneration therapy. J Bioact Compat Polym 28:258–273.  https://doi.org/10.1177/0883911513481133 CrossRefGoogle Scholar
  60. Kosta AK, Solakhia TM, Agrawal S (2012) Chitosan nanoparticles – a drug delivery system. Int J Pharm Biol Arch 3:737–743Google Scholar
  61. Kumari S, Singh RP (2012) Glycolic acid-g-chitosan-Pt-Fe3O4 nanoparticles nanohybrid scaffold for tissue engineering and drug delivery. Int J Biol Macromol 51:76–82.  https://doi.org/10.1016/j.ijbiomac.2012.01.040 CrossRefPubMedGoogle Scholar
  62. Kumari S, Singh RP (2013) Glycolic acid functionalized chitosan-Au-Fe3O4 hybrid nanoparticles based nanohybrid scaffold for drug delivery. Int J Biol Macromol 54:244–249.  https://doi.org/10.1016/j.ijbiomac.2012.12.001 CrossRefPubMedGoogle Scholar
  63. Li Y, Chen F, Nie J, Yang D (2012) Electrospunpoly(lactic acid)/chitosan core-shell structure nanofibers from homogeneous solution. Carbohydr Polym 90:1445–1451.  https://doi.org/10.1016/j.carbpol.2012.07.013 CrossRefPubMedGoogle Scholar
  64. Lin YH, Sonaje K, Lin KM, Juang JH, Mi FL, Yang HW, Sung HW (2008) Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J Control Release 132:141–149.  https://doi.org/10.1016/j.jconrel.2008.08.020 CrossRefPubMedGoogle Scholar
  65. Liu H, Chen B, Mao Z, Gao C (2007) Chitosan nanoparticles for loading of toothpaste actives and adhesion on tooth analogs. J Appl Polym Sci 106:4248–4256.  https://doi.org/10.1002/app.27078 CrossRefGoogle Scholar
  66. Manchanda R, Nimesh R (2010) Controlled size chitosan nanoparticles as an efficient, biocompatible oligonucleotides delivery system. J Appl Polym Sci 118:2071–2077.  https://doi.org/10.1002/app.32508 CrossRefGoogle Scholar
  67. Mi FL, Shyu SS, Peng CK (2005) Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J Polym Sci Part A Polym Chem 43:1985–2000.  https://doi.org/10.1002/pola.20669 CrossRefGoogle Scholar
  68. Mohamed SH, Arafa AS, Mady WH, Fahmy HA, Omer LM, Morsi RE (2017) Preparation and immunological evaluation of inactivated avian influenza virus vaccine encapsulated in chitosan nanoparticles. Biologicals 51:46–53.  https://doi.org/10.1016/j.biologicals.2017.10.004 CrossRefPubMedGoogle Scholar
  69. Mohapatra A, Harris MA, LeVine D, Ghimire M, Jennings JA, Morshed BI, Haggard WO, Bumgardner JD, Mishra SR, Fujiwara T (2018) Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles. J Biomed Mater Res Part B 106:2169–2176.  https://doi.org/10.1002/jbm.b.34015 CrossRefGoogle Scholar
  70. Munawar AM, Jaweria TMS, Kishor MW, Ellen KW (2017) Review: an overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9:1–26.  https://doi.org/10.3390/pharmaceutics9040053 CrossRefGoogle Scholar
  71. Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9.  https://doi.org/10.1016/j.carbpol.2009.01.016 CrossRefGoogle Scholar
  72. Obaidat R, Al-Jbour N, Al-Sou’d K, Sweidan K, Al-Remawi M, Badwan A (2010) Some physicochemical properties of low molecular weight chitosans and their relationship to conformation in aqueous solution. J Solut Chem 39:575–588.  https://doi.org/10.1007/s10953-010-9517-x CrossRefGoogle Scholar
  73. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600–1605.  https://doi.org/10.1002/marc.200400253 CrossRefGoogle Scholar
  74. Ohya Y, Shiratani M, Kobayashi H, Ouchi T (1993) Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Pure Appl Chem 31:629–642.  https://doi.org/10.1080/10601329409349743 CrossRefGoogle Scholar
  75. Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP (2006) Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem 43:17–24.  https://doi.org/10.1042/BA20050075 CrossRefPubMedGoogle Scholar
  76. Qandil AM, Obaidat AA, Ali MAM, Al-Taani BM, Tashtoush BM (2009) Investigation of the interactions in complexes of low molecular weight chitosan with ibuprofen. J Solut Chem 38:695–712.  https://doi.org/10.1007/s10953-009-9405-4 CrossRefGoogle Scholar
  77. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700.  https://doi.org/10.1016/j.carres.2004.09.007 CrossRefGoogle Scholar
  78. Saha P, Goyal AK, Rath G (2010) Formulation and evaluation of chitosan-based ampicillin trihydrate nanoparticles. Trop J Pharm Res 9:483–488CrossRefGoogle Scholar
  79. Sajeesh S, Sharma CP (2006) Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 325:147–154.  https://doi.org/10.1016/j.ijpharm.2006.06.019 CrossRefPubMedGoogle Scholar
  80. Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D (2006) Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther 12:131–138.  https://doi.org/10.1007/s10989-005-9010-3 CrossRefGoogle Scholar
  81. Sarukawa J, Takahashi M, Abe M, Suzuki D, Tokura S, Furuike T, Tamura H (2011) Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering. J Biomater Sci Polym Ed 22:717–732.  https://doi.org/10.1163/092050610X491067 CrossRefPubMedGoogle Scholar
  82. Shimanovich U, Tkacz ID, Eliaz D, Cavaco-Paulo A, Michaeli S, Gedanken A (2011) Encapsulation of RNA molecules in BSA microspheres and internalization into Trypanosoma Brucei parasites and human U2OS cancer cells. Adv Funct Mater 21:3659–3666.  https://doi.org/10.1002/adfm.201100963 CrossRefGoogle Scholar
  83. Soares PIP, Sousa AI, Silva JC, Ferreira IMM, Novo CMM, Borges JP (2016) Chitosan-based nanoparticles as drug delivery systems for doxorubicin: optimization and modelling. Carbohydr Polym 147:304–312.  https://doi.org/10.1016/j.carbpol.2016.03.028 CrossRefPubMedGoogle Scholar
  84. Songjiang Z, Lixiang W (2009) Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS PharmSciTech 10:900–905.  https://doi.org/10.1208/s12249-009-9279-1 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20.  https://doi.org/10.1016/S0168-3659(00)00339-4 CrossRefPubMedGoogle Scholar
  86. Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR (2018) Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci Rep 8:1–11.  https://doi.org/10.1038/s41598-018-23064-4 CrossRefGoogle Scholar
  87. Tang ZX, Qian JQ, Shi LE (2007) Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Appl Biochem Biotechnol 136:77–96.  https://doi.org/10.1007/BF02685940 CrossRefPubMedGoogle Scholar
  88. Teijeiro-Osorio D, Remuñán-López C, Alonso MJ (2009) New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules 10:243–249.  https://doi.org/10.1021/bm800975j CrossRefPubMedGoogle Scholar
  89. Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51–66Google Scholar
  90. Torres-Giner S, Ocio MJ, Lagaron JM (2008) Development of active antimicrobial fiber based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci 8:303–314.  https://doi.org/10.1002/elsc.200700066 CrossRefGoogle Scholar
  91. Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U (2014) Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250.  https://doi.org/10.1016/j.ejps.2014.05.021 CrossRefPubMedGoogle Scholar
  92. Van Hong Thien D, Hsiao SW, Ho MH, Li CH, Shih JL (2013) Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J Mater Sci 48:1640–1645.  https://doi.org/10.1007/s10853-012-6921-1 CrossRefGoogle Scholar
  93. Vivek R, Babu NV, Thangam R, Subramanian KS, Kannan S (2013) pH-responsive drug delivery of chitosan nanoparticles as tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B Biointerfaces 111:117–123.  https://doi.org/10.1016/j.colsurfb.2013.05.018 CrossRefPubMedGoogle Scholar
  94. Wang X, Chi N, Tang X (2008) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70:735–740.  https://doi.org/10.1016/j.ejpb.2008.07.005 CrossRefPubMedGoogle Scholar
  95. Wang Q, Zhang J, Wang A (2009) Preparation and characterization of a novel pH sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78:731–737.  https://doi.org/10.1016/j.carbpol.2009.06.010 CrossRefGoogle Scholar
  96. Xu J, Zhang J, Gao W, Liang H, Wang H, Li J (2009) Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Mater Lett 63:658–660.  https://doi.org/10.1016/j.matlet.2008.12.014 CrossRefGoogle Scholar
  97. Ye M, Kim S, Park K (2010) Issues in long-term protein delivery using biodegradable microparticles. J Control Release 146:241–260.  https://doi.org/10.1016/j.jconrel.2010.05.011 CrossRefPubMedGoogle Scholar
  98. Yeh MK, Cheng KM, Hu CS, Huang YC, Young JJ (2011) Novel protein loaded chondroitin sulfate-chitosan nanoparticles: preparation and characterization. Acta Biomater 7:3804–3812.  https://doi.org/10.1016/j.actbio.2011.06.026 CrossRefPubMedGoogle Scholar
  99. Yoksan R, Jirawutthiwongchai J, Arpo K (2010) Encapsulation of ascorbylpalmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids Surf B Biointerfaces 76:292–297.  https://doi.org/10.1016/j.colsurfb.2009.11.007 CrossRefPubMedGoogle Scholar
  100. Yuan TT, DiGeorgeFoushee AM, Johnson MC, Jockheck-Clark AR, Stahl JM (2018) Development of electrospun chitosan- polyethylene oxide / fibrinogen biocomposite for potential wound healing applications. Nanoscale Res Lett 13:88.  https://doi.org/10.1186/s11671-018-2491-8 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zivanovic S, Davis RH, Golden DA (2015) Chitosan as an antimicrobial in food products. In: Taylor TM (ed) Handbook of natural antimicrobials for food safety and quality. Elsevier Ltd, Amsterdam, pp 153–181.  https://doi.org/10.1016/B978-1-78242-034-7.00008-6 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sheriff Adewuyi
    • 1
  • Iriczalli Cruz-Maya
    • 2
  • Onome Ejeromedoghene
    • 1
  • Vincenzo Guarino
    • 2
    Email author
  1. 1.Department of Chemistry, College of Physical SciencesFederal University of Agriculture AbeokutaAbeokutaNigeria
  2. 2.Institute for Polymers, Composites and BiomaterialsNational Research Council of ItalyNaplesItaly

Personalised recommendations