Advertisement

Nanocosmetics pp 141-159 | Cite as

SmartLipids—The Third Generation of Solid Submicron Lipid Particles for Dermal Delivery of Actives

  • Rainer H. Müller
  • Florence Olechowski
  • Daniel Köpke
  • Sung Min PyoEmail author
Chapter

Abstract

Nanotechnology deals with particles or structures being in the nanodimension, which means from the technical definition below 1 µm. The size range is from a few nm to below 1000 nm (≙1 µm). There are two groups of particles: nanoparticles according to the legal definition being below 100 nm, and the particles between 100 and 1000 nm which are called submicron particles for better differentiation.

Keywords

Solid lipid nanoparticles Nanostructured lipid carriers SmartLipids Dermal bioavailability enhancement Occlusive film formation Transepidermal water loss Anti-pollution effect Nanotoxicological classification system 

References

  1. 1.
    Paris Match no. 3531, 19 au 25 Janvier 2017 2 b, France. Google Scholar
  2. 2.
    Birrenbach G, Speiser PP. Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci. 1976;65(12):1763–6.CrossRefGoogle Scholar
  3. 3.
    Cerqueira-Coutinho C, dos Santos EP, & Mansur CRE. Niosomes as nano-delivery systems in the pharmaceutical field. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2016:33(2).Google Scholar
  4. 4.
    Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Controlled Release. 2000;65(3):403–18.CrossRefGoogle Scholar
  5. 5.
    Cevc G, Blume G, Schätzlein A. Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo1. J Controlled Release. 1997;45(3):211–26.CrossRefGoogle Scholar
  6. 6.
    Rajan R, Jose S, Mukund VB, Vasudevan DT. Transferosomes-A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res. 2011;2(3):138.CrossRefGoogle Scholar
  7. 7.
    Semalty A, Semalty M, Rawat BS, Singh D, Rawat MSM. Pharmacosomes: the lipid-based new drug delivery system. Expert Opin Drug Deliv. 2009;6(6):599–612.CrossRefGoogle Scholar
  8. 8.
    Ajay, S., Vikas, P., Rajesh, S., Punit, B., & Suchit, J. (2012). Herbosomes: A Current Concept of Herbal Drug Technology, An Overview. Journal of Medical Pharmaceutical and Allied Sciences, 1.Google Scholar
  9. 9.
    Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science. 2002;298(5595):1006–9.CrossRefGoogle Scholar
  10. 10.
    Webb MS, Bally MB, Mayer LD. (1996). U.S. Patent No. 5,543,152. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  11. 11.
    Saraf S, Gupta D, Kaur CD, Saraf S, Res IJCS. Sphingosomes a novel approach to vesicular drug delivery. Int J Cur Sci Res. 2011;1(2):63–8.Google Scholar
  12. 12.
    Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discovery Today. 2016;21(5):789–801.CrossRefGoogle Scholar
  13. 13.
    Gasco, M. R. (1993). U.S. Patent No. 5,250,236. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  14. 14.
    Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.CrossRefGoogle Scholar
  15. 15.
    Müller RH, Jenning V, Mäder K, Lippacher A. (2000). European Patent. EP1176949A2.Google Scholar
  16. 16.
    Müller RH, Jenning V, Mäder K, Lippacher A. (2014). U.S. Patent No. 8,663,692. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  17. 17.
    Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84.CrossRefGoogle Scholar
  18. 18.
    Doktorovova S, Souto EB. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin Drug Deliv. 2009;6(2):165–76.CrossRefGoogle Scholar
  19. 19.
    Garcês A, Amaral MH, Lobo JS, Silva AC. (2017). Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. European J Pharm Sci.Google Scholar
  20. 20.
    Bunjes H, Westesen K, Koch MH. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int J Pharm. 1996;129(1–2):159–73.CrossRefGoogle Scholar
  21. 21.
    Jenning V, Gohla SH. Encapsulation of retinoids in solid lipid nanoparticles (SLN). J Microencapsul. 2001;18(2):149–58.CrossRefGoogle Scholar
  22. 22.
    Ruick R SmartLipids—die neue Generation der Lipidnanopartikel nach SLN und NLC. Doctoral dissertation, 2016 Freie Universität Berlin.Google Scholar
  23. 23.
    Müller RH, Ruick R, Keck CM. (2014). smartLipids®—the next generation of lipid nanoparticles by optimized design of particle matrix. DPhG-Jahrestagung, Frankfurt, PT.27.Google Scholar
  24. 24.
    Müller RH, Ruick R, Keck CM. smartLipids®—the new generation of lipid nanoparticles after SLN and NLC. San Diego: AAPS Annual Meeting; 2014. p. T3134.Google Scholar
  25. 25.
    Pyo SM, Müller RH, Keck CM. (2017). Encapsulation by nanostructured lipid carriers. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries, 114–37.CrossRefGoogle Scholar
  26. 26.
    zur Mühlen A, Schwarz C, Mehnert W. (1998). Solid lipid nanoparticles (SLN) for controlled bioactive delivery–bioactive release and release mechanism. Europ J Pharm Biopharm 45(2):149–55.Google Scholar
  27. 27.
    Gasco MR. (1993). U.S. Patent No. 5,250,236. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  28. 28.
    Schubert MA, Müller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles–evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55(1):125–31.CrossRefGoogle Scholar
  29. 29.
    Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm. 2003;257(1–2):153–60.CrossRefGoogle Scholar
  30. 30.
    Garcıa-Fuentes M, Torres D, Alonso MJ. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf B. 2003;27(2–3):159–68.CrossRefGoogle Scholar
  31. 31.
    Charcosset C, Fessi H. Preparation of nanoparticles with a membrane contactor. J Membr Sci. 2005;266(1–2):115–20.CrossRefGoogle Scholar
  32. 32.
    Ahmed El-Harati A, Charcosset C, Fessi H. Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor. Pharm Dev Technol. 2006;11(2):153–7.CrossRefGoogle Scholar
  33. 33.
    Luo Y, Chen D, Ren L, Zhao X, Qin J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Controlled Release. 2006;114(1):53–9.CrossRefGoogle Scholar
  34. 34.
    Müller RH, Dingler A, Schneppe T, Gohla S. Large scale production of solid lipid nanoparticles (SLN™) and nanosuspensions (DissoCubes™). Handbook of pharmaceutical controlled release technology; 2000:359–76.Google Scholar
  35. 35.
    Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16.CrossRefGoogle Scholar
  36. 36.
    Romero GB, Chen R, Keck CM, Müller RH. Industrial concentrates of dermal hesperidin smartCrystals®–production, characterization & long-term stability. Int J Pharm. 2015;482(1–2):54–60.CrossRefGoogle Scholar
  37. 37.
    Hatahet T, Morille M, Hommoss A, Dorandeu C, Müller RH, Bégu S. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety. Eur J Pharm Biopharm. 2016;102:51–63.CrossRefGoogle Scholar
  38. 38.
    Müller RH, Sinambela P, Keck CM. NLC–the invisible dermal patch for moisturizing & skin protection. EuroCosmetics. 2013;6:20–3.Google Scholar
  39. 39.
    Courage W. (1994). Hardware and measuring principle: corneometer. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the Stratum corneum. CRC Press, 17, 1–176.Google Scholar
  40. 40.
    Vierkötter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Krämer U, Krutmann J. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol. 2010;130(12):2719–26.CrossRefGoogle Scholar
  41. 41.
    Buzek J, Ask B. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Official J Europ Union. 2009:59.Google Scholar
  42. 42.
    Keck CM, Müller RH. Nanotoxicological classification system (NCS)–a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm. 2013;84(3):445–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rainer H. Müller
    • 1
  • Florence Olechowski
    • 2
  • Daniel Köpke
    • 1
  • Sung Min Pyo
    • 1
    Email author
  1. 1.Department of Pharmaceutical TechnologyFreie Universität Berlin, Institute of PharmacyBerlinGermany
  2. 2.Berg + Schmidt GmbH & Co. KGHamburgGermany

Personalised recommendations