Advertisement

Nanocosmetics pp 299-335 | Cite as

Safety and Toxicity Counts of Nanocosmetics

  • Gunjan JeswaniEmail author
  • Swarnali Das Paul
  • Lipika Chablani
  • Ajazuddin
Chapter

Abstract

The advent of nanotechnology has led to advances in the cosmetic industry and is expected to grow further in the near future. Nanotechnology-driven products cater to the expectations of both consumers and manufactures in terms of better quality and effectiveness along with improved stability and easy scale-up. Several organic and inorganic materials are being utilized for the preparation of nanocosmetics having improved characteristics. At the same time, the safety aspects of nanocosmetics are also being pondered. Physicochemical properties play a significant role in controlling the toxicity of nanomaterials. Several mechanisms have been studied for nanomaterial generated toxicity; out of all, reactive oxygen species, generation is the most important mechanism. This chapter discusses all the relevant aspects which are required for safety and toxicity assessments of nano-ingredients for cosmetic use. Regulatory issues are also discussed because of their relevance in preventing the unforeseen toxicity of nanocosmetics.

Keywords

Nanocosmetics Reactive oxygen species Genotoxicity Cytotoxicity Regulatory 

References

  1. 1.
    Abdel-Khalek AA, Badran SR, Marie M-AS. Toxicity evaluation of copper oxide bulk and nanoparticles in Nile tilapia, Oreochromis niloticus, using hematological, bioaccumulation and histological biomarkers. Fish Physiol Biochem. 2016;42(4):1225–36.  https://doi.org/10.1007/s10695-016-0212-8.CrossRefPubMedGoogle Scholar
  2. 2.
    Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Res An Interdisc Forum Nanoscale Sci Technol. 2010;12(7):2313–33.  https://doi.org/10.1007/s11051-010-9911-8.CrossRefGoogle Scholar
  3. 3.
    Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K. Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater. 1999;1(1):77–82.  https://doi.org/10.1016/S1463-0176(99)00012-5.CrossRefGoogle Scholar
  4. 4.
    Ansell J, Care P, Council P, Rauscher H. Report of the Joint Regulator—Industry Ad Hoc Working Group: Currently Available Methods for Characterization of Nanomaterials, 35 (2011). Retrieved from http://ec.europa.eu/consumers/sectors/cosmetics/files/pdf/iccr5_char_nano_en.pdf.
  5. 5.
    Arefian Z, Pishbin F, Negahdary M, Ajdary M. Potential toxic effects of Zirconia Oxide nanoparticles on liver and kidney factors. Biomed Res. 2015;26(1):89–97.Google Scholar
  6. 6.
    Asharani PV, Low G, Mun K, Hande MP, Valiyaveettil S. Cytotoxicity and Genotoxicity of Silver. 2009;3(2):279–90.Google Scholar
  7. 7.
    Aueviriyavit S, Phummiratch D, Kulthong K, Maniratanachote R. Titanium Dioxide nanoparticles-mediated in vitro cytotoxicity does not induce Hsp70 and Grp78 expression in human bronchial epithelial A549 cells. Biol Trace Element Res. 2012;149(1):123–32.  https://doi.org/10.1007/s12011-012-9403-z.CrossRefGoogle Scholar
  8. 8.
    Bach A, Hellack B, Wyrwoll AJ, Lautenschl P, Sch A. Size matters e the phototoxicity of TiO2 nanomaterials. 2016;208:859–67.  https://doi.org/10.1016/j.envpol.2015.10.035.CrossRefGoogle Scholar
  9. 9.
    Balasubramanyam A, Sailaja N, Mahboob M, Rahman F, Hussain SM, Grover P. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis. 2009;24(3):245–51.  https://doi.org/10.1093/mutage/gep003.CrossRefPubMedGoogle Scholar
  10. 10.
    Bennat C, Müller-Goymann CC. Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmet Sci. 2000;22(4):271–83.  https://doi.org/10.1046/j.1467-2494.2000.00009.x.CrossRefPubMedGoogle Scholar
  11. 11.
    Bernardeschi M, Guidi P, Scarcelli V, Frenzilli G, Nigro M. Genotoxic potential of TiO2 on bottlenose dolphin leukocytes. Anal Bioanal Chem. 2010;396(2):619–23.  https://doi.org/10.1007/s00216-009-3261-3.CrossRefPubMedGoogle Scholar
  12. 12.
    Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle Fibre Toxicol. 2009;6(1):17.  https://doi.org/10.1186/1743-8977-6-17.CrossRefGoogle Scholar
  13. 13.
    Bolt HM. Genotoxicity–threshold or not? Introduction of cases of industrial chemicals. Toxicol Lett. 2003;140–141:43–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12676450.CrossRefGoogle Scholar
  14. 14.
    Borkow G. Using Copper to improve the well-being of the skin. Curr Chem Biol. 2014;47:89–102.Google Scholar
  15. 15.
    Borkow G, Del A, Elías C. Facial skin lifting and brightening following sleep on Copper Oxide containing pillowcases. 2016.  https://doi.org/10.3390/cosmetics3030024.CrossRefGoogle Scholar
  16. 16.
    Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, Huo L-J, et al. Toxicity of nanoparticles on the reproductive system in animal models: a review. Front Pharmacol. 2017;8:606.  https://doi.org/10.3389/fphar.2017.00606.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    CFR—Code of Federal Regulations Title 21. (n.d.). Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=352.50.
  18. 18.
    Calabrese V, Cornelius C, Leso V, Trovato-Salinaro A, Ventimiglia B, Cavallaro M, Castellino P, et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta (BBA)—Mol Basis Disease. 2012;1822(5):729–36.  https://doi.org/10.1016/j.bbadis.2011.12.003.CrossRefGoogle Scholar
  19. 19.
    Chambers C, Degen G, Dubakiene R, Grimalt R, Jazwiec-Kanyion B, Kapoulas V, White I, et al. Scientific committee on consumer products SCCP preliminary opinion on safety of nanomaterials in cosmetic products. 2007.Google Scholar
  20. 20.
    Chandran P, Riviere JE, Monteiro-Riviere NA. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells. Nanotoxicology. 2017;11(4):507–19.  https://doi.org/10.1080/17435390.2017.1314036.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen L, Yokel RA, Hennig B, Toborek M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol Official J Soc NeuroImmune Pharmacol. 2008;3(4):286–95.  https://doi.org/10.1007/s11481-008-9131-5.CrossRefGoogle Scholar
  22. 22.
    Chen T, Yan J, Li Y. Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal. 2014.  https://doi.org/10.1016/j.jfda.2014.01.008.CrossRefGoogle Scholar
  23. 23.
    Crosera M, Prodi A, Mauro M, Pelin M, Florio C, Bellomo F, Filon FL, et al. Titanium Dioxide nanoparticle penetration into the skin and effects on HaCaT cells. Int J Environ Res Public Health. 2015;12(8):9282–97.  https://doi.org/10.3390/ijerph120809282.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    De Alteriis E, Falanga A, Galdiero S, Guida M, Maselli C, Galdiero E. Genotoxicity of gold nanoparticles functionalized with indolicidin towards Saccharomyces cerevisiae. J Environ Sci. 2017.  https://doi.org/10.1016/J.JES.2017.04.034.CrossRefGoogle Scholar
  25. 25.
    De Angelis I, Barone F, Zijno A, Bizzarri L, Russo MT, Pozzi R, De Berardis B, et al. Comparative study of ZnO and TiO2 nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells. Nanotoxicology. 2013;7(8):1361–72.  https://doi.org/10.3109/17435390.2012.741724.CrossRefGoogle Scholar
  26. 26.
    Demir E, Akça H, Turna F, Aksakal S, Burgucu D, Kaya B, Marcos R, et al. Genotoxic and cell-transforming effects of titanium dioxide nanoparticles. Environ Res. 2015;136:300–8.  https://doi.org/10.1016/j.envres.2014.10.032.CrossRefPubMedGoogle Scholar
  27. 27.
    Deng J, Yao M, Gao C. Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers. Acta Biomater. 2017;53:610–8.  https://doi.org/10.1016/j.actbio.2017.01.082.CrossRefPubMedGoogle Scholar
  28. 28.
    Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27(7):247–59.  https://doi.org/10.3109/09687688.2010.522203.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Devika Chithrani B, Ghazani AA, Chan WCW. Determining the size and shape dependence of Gold nanoparticle uptake into mammalian cells. 2006.  https://doi.org/10.1021/NL052396O.CrossRefGoogle Scholar
  30. 30.
    Djuris AB, Leung YH, Ng AMC, Xu XY, Lee PKH, Degger N, Wu RSS. Toxicity of Metal Oxide nanoparticles : mechanisms, characterization, and avoiding experimental artefacts. 2014:1–19.  https://doi.org/10.1002/smll.201303947.CrossRefGoogle Scholar
  31. 31.
    Dobrzyńska MM, Gajowik A, Radzikowska J, Lankoff A, Dušinská M, Kruszewski M. Genotoxicity of Silver and Titanium Dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology. 2014;315:86–91.  https://doi.org/10.1016/j.tox.2013.11.012.CrossRefPubMedGoogle Scholar
  32. 32.
    Donner EM, Myhre A, Brown SC, Boatman R, Warheit DB. In vivo micronucleus studies with 6 Titanium Dioxide materials (3 pigment-grade & 3 nanoscale) in orally-exposed rats. Regul Toxicol Pharmacol. 2016;74:64–74.  https://doi.org/10.1016/j.yrtph.2015.11.003.CrossRefPubMedGoogle Scholar
  33. 33.
    Downs TR, Crosby ME, Hu T, Kumar S, Sullivan A, Sarlo K, Pfuhler S, et al. Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutat Res/Genetic Toxicol Environ Mutagen. 2012;745(1–2):38–50.  https://doi.org/10.1016/j.mrgentox.2012.03.012.CrossRefGoogle Scholar
  34. 34.
    Dubey A, Goswami M, Yadav K, Chaudhary D. Oxidative stress and nano-toxicity induced by TiO2 and ZnO on WAG cell line. 2015:1–26.  https://doi.org/10.1371/journal.pone.0127493.CrossRefGoogle Scholar
  35. 35.
    Duvall MN, Knight K. FDA regulation of nanotechnology. Food and Drug Agency (FDA) USA, (December). 2011. Retrieved from http://www.fda.gov/nanotechnology/regulation.html.
  36. 36.
    Egerton TA, Tooley IR. UV absorption and scattering properties of inorganic-based sunscreens. Int J Cosmet Sci. 2012;34(2):117–22.  https://doi.org/10.1111/J.1468-2494.2011.00689.X.CrossRefPubMedGoogle Scholar
  37. 37.
    Ema M, Masumori S, Kobayashi N, Naya M, Endoh S, Maru J, Nakanishi J, et al. In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled. J Appl Toxicol. 2013;33(10):1053–60.  https://doi.org/10.1002/jat.2810.CrossRefPubMedGoogle Scholar
  38. 38.
    Eom H, Jeong J, Choi J. Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode. Caenorhabditis Elegans. 2015:1–8.Google Scholar
  39. 39.
    Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 2009;23(7):1365–71.  https://doi.org/10.1016/j.tiv.2009.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Federal Register : Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability. (n.d.). Retrieved November 17, 2017, from https://www.federalregister.gov/documents/2014/06/27/2014-15032/guidance-for-industry-safety-of-nanomaterials-in-cosmetic-products-availability.
  41. 41.
    Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol. 2007;41(24):8484–90.  https://doi.org/10.1021/es071445r.CrossRefPubMedGoogle Scholar
  42. 42.
    Fu PP, Xia Q, Hwang H, Ray PC. Sciencedirect mechanisms of nanotoxicity: generation of reactive oxygen species 5. J Food Drug Anal. 2014;22(1):64–75.  https://doi.org/10.1016/j.jfda.2014.01.005.CrossRefPubMedGoogle Scholar
  43. 43.
    Gaspar LR, Tharmann J, Maia Campos PMBG, Liebsch M. Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate. Toxicol In Vitro. 2013;27(1):418–25.  https://doi.org/10.1016/j.tiv.2012.08.006.CrossRefPubMedGoogle Scholar
  44. 44.
    Gałecka E, Jacewicz R, Mrowicka M, Florkowski A, Gałecki P. [Antioxidative enzymes–structure, properties, functions]. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego. 2008;25(147):266–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19112846.
  45. 45.
    Ghosh S, Sharma A, Talukder G. Relationship of clastogenic effects of zirconium oxychloride to dose and duration of exposure in bone marrow cells of mice in vivo. Toxicol Lett. 1991;55(2):195–201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1998207.CrossRefGoogle Scholar
  46. 46.
    Girgis E, Khalil WKB, Emam AN, Mohamed MB, Rao KV. Nanotoxicity of Gold and Gold-Cobalt nanoalloy. Chem Res Toxicol. 2012;25(5):1086–98.  https://doi.org/10.1021/tx300053h.CrossRefPubMedGoogle Scholar
  47. 47.
    Gontier E, Ynsa M-D, Bíró T, Hunyadi J, Kiss B, Gáspár K, Surlève-Bazeille J-E, et al. Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology. 2008;2(4):218–31.  https://doi.org/10.1080/17435390802538508.CrossRefGoogle Scholar
  48. 48.
    Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of Gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 2004;15(4):897–900.  https://doi.org/10.1021/bc049951i.CrossRefPubMedGoogle Scholar
  49. 49.
    Grudzinski IP, Bystrzejewski M, Cywinska MA, Kosmider A, Poplawska M, Cieszanowski A, Ostrowska A. Cytotoxicity evaluation of carbon-encapsulated iron nanoparticles in melanoma cells and dermal fibroblasts. 2013.  https://doi.org/10.1007/s11051-013-1835-7.
  50. 50.
    Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett. 2012;7(1):602.  https://doi.org/10.1186/1556-276X-7-602.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Guichard Y, Maire M-A, Sébillaud S, Fontana C, Langlais C, Micillino J-C, Gaté L, et al. Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure, part 2: intratracheal instillation and intravenous injection. Environ Mol Mutagen. 2015;56(2):228–44.  https://doi.org/10.1002/em.21928.CrossRefPubMedGoogle Scholar
  52. 52.
    Guichard Y, Schmit J, Darne C, Gaté L, Goutet M, Rousset D, Binet S, et al. Cytotoxicity and genotoxicity of nanosized and microsized Titanium Dioxide and Iron Oxide particles in Syrian Hamster embryo cells. Ann Occup Hyg. 2012;56(5):631–44.  https://doi.org/10.1093/annhyg/mes006.CrossRefPubMedGoogle Scholar
  53. 53.
    Guidance Documents > Guidance for Industry: Safety of Nanomaterials in Cosmetic Products. (n.d.). Retrieved November 17, 2017, from https://www.fda.gov/Cosmetics/GuidanceRegulation/GuidanceDocuments/ucm300886.htm.
  54. 54.
    Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510. https://www.sciencedirect.com/science/article/pii/S1748013215000766.CrossRefGoogle Scholar
  55. 55.
    Gümüş D, Berber AA, Ada K, Aksoy H. In vitro genotoxic effects of ZnO nanomaterials in human peripheral lymphocytes. Cytotechnology. 2014;66(2):317–25.  https://doi.org/10.1007/s10616-013-9575-1.CrossRefPubMedGoogle Scholar
  56. 56.
    Hackenberg S, Friehs G, Kessler M, Froelich K, Ginzkey C, Koehler C, Kleinsasser N, et al. Nanosized titanium dioxide particles do not induce DNA damage in human peripheral blood lymphocytes. Environ Mol Mutagen. 2011;52(4):264–8.  https://doi.org/10.1002/em.20615.CrossRefPubMedGoogle Scholar
  57. 57.
    Hamzeh M, Sunahara GI. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol In Vitro. 2013;27(2):864–73.  https://doi.org/10.1016/j.tiv.2012.12.018.CrossRefPubMedGoogle Scholar
  58. 58.
    He X, Hwang HM. Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal. 2016.  https://doi.org/10.1016/j.jfda.2016.06.001.CrossRefGoogle Scholar
  59. 59.
    Honeywell-Nguyen PL, Groenink HWW, De Graaff AM, Bouwstra JA. The in vivo transport of elastic vesicles into human skin: effects of occlusion, volume and duration of application. J Controlled Release. 2003;90(2):243–55.  https://doi.org/10.1016/S0168-3659(03)00202-5.CrossRefGoogle Scholar
  60. 60.
    Horie M, Sugino S, Kato H, Tabei Y, Nakamura A, Yoshida Y. Does photocatalytic activity of TiO2 nanoparticles correspond to photo-cytotoxicity? Cellular uptake of TiO2 nanoparticles is important in their photo-cytotoxicity. Toxicol Mech Methods. 2016.  https://doi.org/10.1080/15376516.2016.1175530.CrossRefGoogle Scholar
  61. 61.
    Hung C, Chen W, Hsu C, Aljuffali IA, Shih H, Fang J. European Journal of Pharmaceutics and Biopharmaceutics Cutaneous penetration of soft nanoparticles via photo damaged skin : Lipid-based and polymer-based nanocarriers for drug delivery. Eur J Pharm Biopharm (May). 2015.  https://doi.org/10.1016/j.ejpb.2015.05.005.CrossRefGoogle Scholar
  62. 62.
    Iavicoli I, Leso V, Bergamaschi A. Toxicological effects of Titanium Dioxide nanoparticles: a review of In Vivo studies. J Nanomaterials. 2012;2012:1–36.  https://doi.org/10.1155/2012/964381.CrossRefGoogle Scholar
  63. 63.
    Ivask A, Voelcker NH, Seabrook SA, Hor M, Kirby JK, Fenech M, Ke PC. DNA melting and genotoxicity induced by Silver nanoparticles and graphene. 2015.  https://doi.org/10.1021/acs.chemrestox.5b00052.CrossRefGoogle Scholar
  64. 64.
    Jaishree V, Gupta PD. Nanotechnology: a revolution in cancer diagnosis. Indian J Clin Biochem. 2012;27(3):214–20.  https://doi.org/10.1007/s12291-012-0221-z.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Jia Y-P, Ma B-Y, Wei X-W, Qian Z-Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Letters. 2017.  https://doi.org/10.1016/j.cclet.2017.01.021.CrossRefGoogle Scholar
  66. 66.
    Jomini S, Labille J, Bauda P, Pagnout C. Modifications of the bacterial reverse mutation test reveals mutagenicity of TiO2 nanoparticles and byproducts from a sunscreen TiO2-based nanocomposite. Toxicol Lett. 2012;215(1):54–61.  https://doi.org/10.1016/J.TOXLET.2012.09.012.CrossRefPubMedGoogle Scholar
  67. 67.
    Kaba SI, Egorova EM. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnol Sci Appl. 2015;8:19–29.  https://doi.org/10.2147/NSA.S78134.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kaiser JP, Roesslein M, Diener L, Wichser A, Nowack B, Wick P. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. J Nanobiotechnol. 1–11. 2017.  https://doi.org/10.1186/s12951-016-0244-3.
  69. 69.
    Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374–80.  https://doi.org/10.4103/0110-5558.76435.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Khalili Fard J, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull. 2015;5(4):447–54.  https://doi.org/10.15171/apb.2015.061.CrossRefGoogle Scholar
  71. 71.
    Khan HA, Abdelhalim MAK, Al-Ayed MS, Alhomida AS. Effect of gold nanoparticles on glutathione and malondialdehyde levels in liver, lung and heart of rats. Saudi J Biol Sci. 2012;19(4):461–4.  https://doi.org/10.1016/j.sjbs.2012.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kim K, Park H, Lim K-M. Phototoxicity: its mechanism and animal alternative test methods. Toxicol Res. 2015;31(2):97–104.  https://doi.org/10.5487/TR.2015.31.2.097.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kim IY, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed Nanotechnol Biol Med. 2015.  https://doi.org/10.1016/j.nano.2015.03.004.CrossRefGoogle Scholar
  74. 74.
    Ksia I, Radziun E, Wilczyn JD. Toxicology in Vitro assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. 2011;25:1694–700.  https://doi.org/10.1016/j.tiv.2011.07.010.CrossRefGoogle Scholar
  75. 75.
    Kwon JY, Koedrith P, Seo YR. Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations. Int J Nanomed. 2014.  https://doi.org/10.2147/IJN.S57918.
  76. 76.
    Lademann J, Richter H, Schanzer S, Knorr F, Meinke M, Sterry W, Patzelt A. Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm. 2011;77(3):465–8.  https://doi.org/10.1016/j.ejpb.2010.10.015.CrossRefPubMedGoogle Scholar
  77. 77.
    Landsiedel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K, Champ S, Oesch F, et al. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology. 2010;4(4):364–81.  https://doi.org/10.3109/17435390.2010.506694.CrossRefPubMedGoogle Scholar
  78. 78.
    Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine. 2014;9(16):2557–85. https://www.futuremedicine.com/doi/abs/10.2217/nnm.14.149.CrossRefGoogle Scholar
  79. 79.
    Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Ramanujam VS, Soto C. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Communications. 2010;393(4):649–55. https://www.sciencedirect.com/science/article/pii/S0006291X10002573.CrossRefGoogle Scholar
  80. 80.
    Lebedová J, Hedberg YS, Wallinder IO, Karlsson HL. Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. 2017;(2):1–9.  https://doi.org/10.1093/mutage/gex027.CrossRefGoogle Scholar
  81. 81.
    Lee SH, Lee HR, Kim Y-R, Kim M-K. Toxic response of Zinc Oxide nanoparticles in human epidermal keratinocyte HaCaT cells. Toxicol Environ Health Sci. 2012;4(1):14–8.  https://doi.org/10.1007/s13530-012-0112-y.CrossRefGoogle Scholar
  82. 82.
    Lee J, Mahendra S, Alvarez PJJ. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano. 2010;4(7):3580–90.  https://doi.org/10.1021/nn100866w.CrossRefPubMedGoogle Scholar
  83. 83.
    Lee S, Yun H-S, Kim S-H. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials. 2011;32(35):9434–43.  https://doi.org/10.1016/j.biomaterials.2011.08.042.CrossRefPubMedGoogle Scholar
  84. 84.
    Li Y, Qin T, Ingle T, Yan J, He W, Yin J-J, Chen T. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol. 2017;91(1):509–19.  https://doi.org/10.1007/s00204-016-1730-y.CrossRefPubMedGoogle Scholar
  85. 85.
    Lindberg HK, Falck GC-M, Catalán J, Koivisto AJ, Suhonen S, Järventaus H, Norppa H, et al. Genotoxicity of inhaled nanosized TiO2 in mice. Mutat Res/Genetic Toxicol Environ Mutagen. 2012;745(1–2):58–64.  https://doi.org/10.1016/J.MRGENTOX.2011.10.011.CrossRefGoogle Scholar
  86. 86.
    Linskaya AN, Dobrovolskaia MA. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol. 2014;171(17):3988–4000. http://onlinelibrary.wiley.com/doi/10.1111/bph.12722/full.CrossRefGoogle Scholar
  87. 87.
    Liu X, Keane MJ, Zhong BZ, Ong TM, Wallace WE. Micronucleus formation in V79 cells treated with respirable silica dispersed in medium and in simulated pulmonary surfactant. Mutat Res. 1996;361(2–3):89–94. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8980693.CrossRefGoogle Scholar
  88. 88.
    Ma D-D, Yang W-X. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget. 2016;7(26):40882–903.  https://doi.org/10.18632/oncotarget.8553.
  89. 89.
    Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916.  https://doi.org/10.1155/2013/942916.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Maser E, Schulz M, Sauer UG, Wiemann M, Ma-Hock L, Wohlleben W, Landsiedel R, et al. In vitro and in vivo genotoxicity investigations of differently sized amorphous SiO2 nanomaterials. Mutat Res/Genetic Toxicol Environ Mutagen. 2015;794:57–74.  https://doi.org/10.1016/j.mrgentox.2015.10.005.CrossRefGoogle Scholar
  91. 91.
    Mateo D, Morales P, Avalos A, Haza AI. (n.d.). Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts.  https://doi.org/10.1080/17458080.2015.1014934.CrossRefGoogle Scholar
  92. 92.
    Mclaren A, Valdes-Solis T, Li G, Tsang SC. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc. 2009;131(35):12540–1.  https://doi.org/10.1021/ja9052703.CrossRefPubMedGoogle Scholar
  93. 93.
    Meyer K, Rajanahalli P, Ahamed M, Rowe JJ, Hong Y. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol In Vitro. 2011;25(8):1721–6.  https://doi.org/10.1016/j.tiv.2011.08.011.CrossRefPubMedGoogle Scholar
  94. 94.
    Mihranyan A, Ferraz N, Strømme M. Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci. 2012;57(5):875–910.  https://doi.org/10.1016/j.pmatsci.2011.10.001.CrossRefGoogle Scholar
  95. 95.
    Miyani VA, Hughes MF. Assessment of the in vitro dermal irritation potential of cerium, silver, and titanium nanoparticles in a human skin equivalent model. Cutan Ocular Toxicol. 2017;36(2):145–51.  https://doi.org/10.1080/15569527.2016.1211671.CrossRefGoogle Scholar
  96. 96.
    Mo S-D, Ching WY. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B. 1995;51(19):13023–32.  https://doi.org/10.1103/PhysRevB.51.13023.CrossRefGoogle Scholar
  97. 97.
    Moia C, Zhu H. In vitro toxicological assessment of amorphous silica particles in relation to their characteristics and mode of action in human skin cells. 2012. Retrieved from https://dspace.lib.cranfield.ac.uk/bitstream/1826/9760/1/Moia_C_2015.pdf.
  98. 98.
    Morganti P. Use and potential of nanotechnology in cosmetic dermatology. Clin Cosmet Investig Dermatol. 2010;3:5–13. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21437055.
  99. 99.
    Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Archives Toxicol. 2017;91(9):2967–3010.CrossRefGoogle Scholar
  100. 100.
    Nafisi S, Maibach HI. Nanotechnology in cosmetics. 2017.  https://doi.org/10.1016/B978-0-12-802005-0.00022-7.
  101. 101.
    Nam S-H, Kim SW, An Y-J. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest. J Appl Toxicol. 2013;33(10):1061–1069.CrossRefGoogle Scholar
  102. 102.
    Naya M, Kobayashi N, Ema M, Kasamoto S, Fukumuro M, Takami S, Nakanishi J, et al. In vivo genotoxicity study of titanium dioxide nanoparticles using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol. 2012;62(1):1–6.  https://doi.org/10.1016/j.yrtph.2011.12.002.CrossRefPubMedGoogle Scholar
  103. 103.
    Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.  https://doi.org/10.1289/EHP.7339.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Onodera A, Nishiumi F, Kakiguchi K, Tanaka A, Tanabe N, Honma A, Yanagihara I, et al. Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size. Toxicol Rep. 2015;2:574–9. https://www.sciencedirect.com/science/article/pii/S2214750015000360.CrossRefGoogle Scholar
  105. 105.
    Osman IF, Baumgartner A, Cemeli E, Fletcher JN, Anderson D. Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine. 2010;5(8):1193–203.  https://doi.org/10.2217/nnm.10.52.CrossRefPubMedGoogle Scholar
  106. 106.
    Osman IF, Baumgartner A, Cemeli E, Fletcher JN, Anderson D. Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine. 2010;5(8):1193–203.  https://doi.org/10.2217/nnm.10.52.CrossRefPubMedGoogle Scholar
  107. 107.
    Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Jahnen-Dechent W, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5(18):2067–76.  https://doi.org/10.1002/smll.200900466.CrossRefGoogle Scholar
  108. 108.
    Patlolla A, Knighten B, Tchounwou P. Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethn Dis. 2010;20(1 Suppl 1):S1-65–72. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20521388.
  109. 109.
    Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Rafailovich M, et al. Adverse effects of Citrate/Gold nanoparticles on human dermal fibroblasts. Small. 2006;2(6):766–73.  https://doi.org/10.1002/smll.200500492.CrossRefPubMedGoogle Scholar
  110. 110.
    Plotnikov E, Zhuravkov S, Gapeyev A, Plotnikov V, Martemianova I, Martemianov D. Comparative study of genotoxicity of Silver and Gold nanoparticles prepared by the electric spark dispersion method. J Appl Pharm Sci. 2017;7(7):35–9.  https://doi.org/10.7324/JAPS.2017.70705.CrossRefGoogle Scholar
  111. 111.
    Pokharkar V, Dhar S, Bhumkar D, Mali V, Bodhankar S, Prasad BLV. Acute and subacute toxicity studies of chitosan reduced gold nanoparticles: a novel carrier for therapeutic agents. J Biomed Nanotechnol. 2009;5(3):233–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20055004.CrossRefGoogle Scholar
  112. 112.
    Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Donaldson K, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–8.  https://doi.org/10.1038/nnano.2008.111.CrossRefGoogle Scholar
  113. 113.
    Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M. Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology. 2010.  https://doi.org/10.3109/17435390903337693.CrossRefGoogle Scholar
  114. 114.
    Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Chen C, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials. 2010;31(30):7606–19.  https://doi.org/10.1016/j.biomaterials.2010.06.051.CrossRefPubMedGoogle Scholar
  115. 115.
    Rahman T, Hosen I, Islam MMT, Shekhar HU. Oxidative stress and human health. Adv Biosci Biotechnol. 2012;3:997–1019.  https://doi.org/10.4236/abb.2012.327123.CrossRefGoogle Scholar
  116. 116.
    Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev. 2009;27(1):1–35.  https://doi.org/10.1080/10590500802708267.CrossRefGoogle Scholar
  117. 117.
    Reisinger K, Hoffmann S, Alépée N, Ashikaga T, Barroso J, Elcombe C, Maxwell G, et al. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol In Vitro. 2015;29(1):259–70.  https://doi.org/10.1016/j.tiv.2014.10.018.CrossRefPubMedGoogle Scholar
  118. 118.
    Sadiq R, Bhalli JA, Yan J, Woodruff RS, Pearce MG, Li Y, Chen T, et al. Genotoxicity of TiO(2) anatase nanoparticles in B6C3F1 male mice evaluated using Pig-a and flow cytometric micronucleus assays. Mutat Res. 2012;745(1–2):65–72. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22712079.CrossRefGoogle Scholar
  119. 119.
    Sahu D, Kannan GM, Vijayaraghavan R. Carbon black particle exhibits size dependent toxicity in human monocytes. Int J Inflammation. 2014;2014:827019.  https://doi.org/10.1155/2014/827019.CrossRefGoogle Scholar
  120. 120.
    Saraf S, Jeswani G, Kaur C. Development of novel herbal cosmetic cream with curcuma longa extract loaded transfersomes for antiwrinkle effect. Afr J Pharm Pharmacol. 2011:1054–1062, 5(August). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Development+of+novel+herbal+cosmetic+cream+with+Curcuma+longa+extract+loaded+transfersomes+for+antiwrinkle+effect#0.
  121. 121.
    Sardar R, Funston AM, Mulvaney P, Murray RW. Gold nanoparticles: past, present, and future. Langmuir. 2009;25(24):13840–51.  https://doi.org/10.1021/la9019475.CrossRefPubMedGoogle Scholar
  122. 122.
    Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermato-Endocrinology. 2009a;1(4):197–206. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20592791.CrossRefGoogle Scholar
  123. 123.
    Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermato-Endocrinology. 2009b;1(4):197–206. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20592791.CrossRefGoogle Scholar
  124. 124.
    Shen C, James SA, de Jonge MD, Turney TW, Wright PFA, Feltis BN. Relating cytotoxicity, Zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci. 2013;136(1):120–30.  https://doi.org/10.1093/toxsci/kft187.CrossRefPubMedGoogle Scholar
  125. 125.
    Shin H, Ko H, Kim M. Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements. Restorative Dent Endod. 2016;41(3):167–75.  https://doi.org/10.5395/rde.2016.41.3.167.CrossRefGoogle Scholar
  126. 126.
    Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A. TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology. 2013;7(1):48–60.  https://doi.org/10.3109/17435390.2011.629747.CrossRefPubMedGoogle Scholar
  127. 127.
    Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011;25(1):231–41.  https://doi.org/10.1016/j.tiv.2010.11.008.CrossRefPubMedGoogle Scholar
  128. 128.
    Shvedova A, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandelsman V, Baron P, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health Part A. 2003;66(20):1909–26.  https://doi.org/10.1080/713853956.CrossRefPubMedGoogle Scholar
  129. 129.
    Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Mohamad D, et al. Review on Zinc Oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7(3):219–42.  https://doi.org/10.1007/s40820-015-0040-x.CrossRefGoogle Scholar
  130. 130.
    Skelton HG, Smith KJ, Johnson FB, Cooper CR, Tyler WF, Lupton GP. Zirconium granuloma resulting from an aluminum zirconium complex: a previously unrecognized agent in the development of hypersensitivity granulomas. J Am Acad Dermatol. 1993;28(5 Pt 2):874–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8491884.CrossRefGoogle Scholar
  131. 131.
    Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY, Vivero-Escoto JL, Lin VS-Y. (n.d.). Mesoporous silica nanoparticles: structural design and applications Mesoporous silica nanoparticles: structural design and applications Mesoporous silica nanoparticles: structural design and applications. J Mater Chem. Retrieved from http://lib.dr.iastate.edu/chem_pubs.
  132. 132.
    Steenland K, Sanderson W. Lung cancer among industrial sand workers exposed to crystalline silica. Am J Epidemiol. 2001;153(7):695–703.  https://doi.org/10.1093/aje/153.7.695.CrossRefPubMedGoogle Scholar
  133. 133.
    Sycheva LP, Zhurkov VS, Iurchenko VV, Daugel-Dauge NO, Kovalenko MA, Krivtsova EK, Durnev AD. Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res/Genetic Toxicol Environ Mutagen. 2011;726(1):8–14.  https://doi.org/10.1016/j.mrgentox.2011.07.010.CrossRefGoogle Scholar
  134. 134.
    Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman P-J, Silva MJ, et al. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro. 2014;28(1):60–9.  https://doi.org/10.1016/j.tiv.2013.06.009.CrossRefPubMedGoogle Scholar
  135. 135.
    Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman P-J, Silva MJ, et al. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro. 2014;28(1):60–9.  https://doi.org/10.1016/j.tiv.2013.06.009.CrossRefPubMedGoogle Scholar
  136. 136.
    Taylor MR. Nanotechnology: does FDA have the tools it needs? Nanotechnology. 2006 (October).Google Scholar
  137. 137.
    Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009;69(22):8784–9.  https://doi.org/10.1158/0008-5472.CAN-09-2496.CrossRefPubMedGoogle Scholar
  138. 138.
    Turkez H. The role of ascorbic acid on titanium dioxide-induced genetic damage assessed by the comet assay and cytogenetic tests. Exp Toxicol Pathol. 2011;63(5):453–7.  https://doi.org/10.1016/j.etp.2010.03.004.CrossRefPubMedGoogle Scholar
  139. 139.
    Villiers C, Freitas H, Couderc R, Villiers M-B, Marche P. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanoparticle Res Interdisc Forum Nanoscale Sci Technol. 2010;12(1):55–60.  https://doi.org/10.1007/s11051-009-9692-0.CrossRefGoogle Scholar
  140. 140.
    Vinardell M, Llanas H, Marics L, Mitjans M. In Vitro comparative skin irritation induced by nano and non-nano Zinc Oxide. Nanomaterials. 2017;7(3):56.  https://doi.org/10.3390/nano7030056.CrossRefPubMedCentralGoogle Scholar
  141. 141.
    Wang S, Hunter LA, Arslan Z, Wilkerson MG, Wickliffe JK. Chronic exposure to nanosized, anatase titanium dioxide is not cyto- or genotoxic to Chinese hamster ovary cells. Environ Mol Mutagen. 2011;52(8):614–22.  https://doi.org/10.1002/em.20660.CrossRefPubMedGoogle Scholar
  142. 142.
    Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size and shape dependent toxicity of Gold nanomaterials in human skin keratinocytes. Chem Phys Lett. 2008;463(1–3):145–9.  https://doi.org/10.1016/j.cplett.2008.08.039.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Wani MY, Hashim MA, Nabi F, Malik MA. Nanotoxicity: dimensional and morphological concerns. 2011.  https://doi.org/10.1155/2011/450912.CrossRefGoogle Scholar
  144. 144.
    Williams E. Food and Drug Administration (FDA): overview and issues. Congressional Research Service. 2009. Retrieved from http://www.healthpolicyfellows.org/pdfs/FoodandDrugAdministrationFDA-OverviewandIssues.pdf.
  145. 145.
    Wongrakpanich A, Mudunkotuwa IA, Geary SM, Morris AS, Mapuskar KA, Spitz DR, Salem AK. Size-dependent cytotoxicity of copper oxide nanoparticles in lung epithelial cells. Environ Sci Nano. 2016;3(2):365–74.  https://doi.org/10.1039/C5EN00271K.Google Scholar
  146. 146.
    Woodruff RS, Li Y, Yan J, Bishop M, Jones MY, Watanabe F, Chen T, et al. Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. J Appl Toxicol. 2012;32(11):934–43.  https://doi.org/10.1002/jat.2781.CrossRefPubMedGoogle Scholar
  147. 147.
    Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Nel AE, et al. Comparison of the mechanism of toxicity of Zinc Oxide and Cerium Oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–34.  https://doi.org/10.1021/nn800511k.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Xia XR, Monteiro-Riviere NA, Riviere JE. Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol. 2010;242(1):29–37.  https://doi.org/10.1016/j.taap.2009.09.011.CrossRefPubMedGoogle Scholar
  149. 149.
    Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009;29(1):69–78.  https://doi.org/10.1002/jat.1385.CrossRefPubMedGoogle Scholar
  150. 150.
    Zhang Y, Xu D, Li W, Yu J, Chen Y. Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and Canine MDCK Cells. J Nanomater. 2012a.  https://doi.org/10.1155/2012/375496.Google Scholar
  151. 151.
    Zhang Y, Xu D, Li W, Yu J, Chen Y. Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. 2012b.  https://doi.org/10.1155/2012/375496.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gunjan Jeswani
    • 1
    Email author
  • Swarnali Das Paul
    • 1
  • Lipika Chablani
    • 2
  • Ajazuddin
    • 3
  1. 1.Department of Pharmaceutics, Faculty of Pharmaceutical SciencesShri Shankaracharya Group of Institutions, SSTCBhilaiIndia
  2. 2.St. John Fisher CollegeRochesterUSA
  3. 3.Rungta College of Pharmaceutical Sciences and ResearchBhilaiIndia

Personalised recommendations