Advertisement

The Role of Anti-Angiogenic Agents (VEGF)

  • Melinda Oliver
  • Elizabeth S. WaxmanEmail author
Chapter

Abstract

Angiogenesis refers to the growth of newly formed blood vessels from pre-existing vasculature (Wang et al., Oncotarget. 8:53854–72, 2017). Blocking the formation of blood vessels, theoretically, would stop a tumor from growing and metastasizing. For decades researchers have studied tumor growth and metastasis, ultimately discovering tumor-angiogenesis factor vascular endothelial growth factor (VEGF). This discovery led to a different way of treating cancer, blocking certain targets to stop tumor growth (targeted therapy). The discoveries of VEGF, immunotherapy, and driver mutations have changed the treatment paradigm of lung cancer.

There are two anti-angiogenic agents, bevacizumab and ramucirumab, used in combination with chemotherapy agents as first-line and second-line therapy for patients with non-small cell lung cancer (NSCLC). These agents provide an option for VEGF targeted therapy treatment for NSCLC with relatively manageable toxicities.

Keywords

Angiogenesis Tumor-angiogenesis Vascular endothelial growth factor Anti-angiogenesis Bevacizumab Ramucirumab 

References

  1. 1.
    Camp-Sorrell D. Anti-angiogenesis: the fifth cancer treatment modality? Oncol Nurs Forum. 2003;30(6):934–44.  https://doi.org/10.1188/03.ONF.934-944.CrossRefPubMedGoogle Scholar
  2. 2.
    Viele CS. Keys to unlock cancer; targeted therapy. Oncol Nurs Forum. 2005;32(5):935–40.  https://doi.org/10.1188/05.ONF.CrossRefPubMedGoogle Scholar
  3. 3.
    Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: potential pathways, therapy and current strategies-a review. J Adv Res. 2017;8(6):591–605.  https://doi.org/10.1016/j.jare.2017.06.006.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr. 2015;3(33):1–15.  https://doi.org/10.3389/fped.2015.00033.CrossRefGoogle Scholar
  5. 5.
    Ellis LM. The biology of VEGF and tumor angiogenesis. Horizons in Cancer Therapeutics: From Bench to Bedside. 2004;5:4–10.Google Scholar
  6. 6.
    Aggarwal C, Somaiah N, Simon G. Antiangiogenic agents in the management of non-small cell lung cancer: where do we stand now and where are we headed? Cancer Biol Ther. 2012;13(5):247–63.  https://doi.org/10.4161/cbt.13.5.19594.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(2):646–74.  https://doi.org/10.1016/j.cell.2011.02.03.CrossRefPubMedGoogle Scholar
  8. 8.
    Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.  https://doi.org/10.1200/JCO.2005.06.081.CrossRefPubMedGoogle Scholar
  9. 9.
    Blagosklonny MV. Hypoxia-inducible factor: Achilles’ heel of antiangiogenic cancer therapy. Int J Oncol. 2001;19:257–62.  https://doi.org/10.3892/ijo.19.2.257.CrossRefPubMedGoogle Scholar
  10. 10.
    Brooks NA, Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res. 2012;18(7):1855–62.  https://doi.org/10.1158/1078-0432.CCR-11-1590.CrossRefPubMedGoogle Scholar
  11. 11.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.CrossRefGoogle Scholar
  12. 12.
    Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154–65.  https://doi.org/10.1016/J.CEB.2008.12.012.CrossRefPubMedGoogle Scholar
  13. 13.
    Fontanini G, Lucchi M, Viganti S, Mussi A, Ciardiello F, De Laurentiis M, De Placido S, Basolos F, Angeletti CA, Bevilaqua G. Angiogenesis as a prognostic indicator of survival in non-small cell lung cancer: a prospective study. J Natl Cancer Inst. 1997;89(12):881–6.  https://doi.org/10.1093/JNCI/89.12.881.CrossRefPubMedGoogle Scholar
  14. 14.
    Lucchi M, Fontanini G, Mussi A, Vignati S, Ribechini A, Menconi GF, Bevilaqua G, Angeletti CA. Tumor angiogenesis and biologic markers in resected stage I non-small cell lung cancer. Eur J Cardiothorac Surg. 1997;12(4):535–41.  https://doi.org/10.1016/S1010-7940(97)00218-2.CrossRefPubMedGoogle Scholar
  15. 15.
    Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140(4):460–76.  https://doi.org/10.1016/j.cell.2010.01.045.CrossRefPubMedGoogle Scholar
  16. 16.
    Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5(6):423–35.  https://doi.org/10.1038/nrc1628.CrossRefPubMedGoogle Scholar
  17. 17.
    Skliarenko JV, Lunt SJ, Gordon ML, Vitkin A, Milosevic M, Hill RP. Effects of the vascular disrupting agent ZD6126 on interstitial fluid pressure and cell survival in tumors. Cancer Res. 2006;66(4):2074–80.  https://doi.org/10.1158/0008-5472.CAN-05-2046.CrossRefPubMedGoogle Scholar
  18. 18.
    Robinson SP, McIntyre DJ, Checkley D, Tessier JJ, Howe FA, Griffiths JR, Ashton SE, Ryan AJ, Blakey DC, Waterton JC. Tumour dose response to the antivascular agent ZD6126 assessed by magnetic resonance imaging. Br J Cancer. 2003;88(10):1592–7.  https://doi.org/10.1038/sj.bjc.6600926.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Manzo A, Montanino A, Carillio G, Costanzo R, Sandomenico C, Normanno N, Piccirillo MC, Morabito A. Angiogenesis inhibitors in NSCLC: review. Int J Mol Sci. 2017;18(2021):1–17.  https://doi.org/10.3390/ijms18102021.CrossRefGoogle Scholar
  20. 20.
    Homsi J, Daud AI. Spectrum of activity and metabolism of action of VEGF/PDGR inhibitors. Cancer Control. 2007;14(3):285–94.CrossRefGoogle Scholar
  21. 21.
    Wang J, Chen J, Guo Y, Wang B, Chu H. Strategies targeting angiogenesis in advanced non-small cell lung cancer. Oncotarget. 2017;8(32):53854–72.  https://doi.org/10.18632/oncotarget.17957.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sandler AB, Gray R, Perry MC, Brahmer J, Schiller J, Dowlati A, Lilenbaum R, Johnson DH. Paclitaxel-carboplatin alone or with bevacizumab for non-small cell lung cancer. N Engl J Med. 2006;355(24):2542–50.  https://doi.org/10.1056/NEJMoa061884.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sandler AB, Yi J, Dahlberg S, Kolb MM, Wang L, Hambleton J, Schiller J, Johnson DH. Treatment outcomes by tumor histology in Eastern Cooperative Group (ECOG) Study E4599 of bevacizumab with paclitaxel/carboplatin for Advanced Non-Small Cell Lung Cancer (NSCLC). J Thorac Oncol. 2010;5(9):1416–23.  https://doi.org/10.1097/JTO.0b013e3181da36f4.CrossRefPubMedGoogle Scholar
  24. 24.
    Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsch V, Leighl N, Mezger J, Archer V, Moore C, Manegold C. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for non-squamous non-small cell lung cancer: AVAiL. J Clin Oncol. 2009;27(8):1227–34.  https://doi.org/10.1200/JCO.2007.14.5466.CrossRefPubMedGoogle Scholar
  25. 25.
    Soria JC, Mauguen A, Reck M, Sandler AB, Saijo N, Johnson DH, Burcoveanu D, Fukuoka M, Bess P, Pignon JP, on Behalf of the Meta-Analysis of Bevacizumab in Advanced NSCLC Collaborative Group. Systematic review and meta-analysis of randomised, phase II/III trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol. 2013;24(1):20–30.  https://doi.org/10.1093/annonc/mds590.CrossRefPubMedGoogle Scholar
  26. 26.
    Behera M, Pillai RM, Owonikoko TK, Kim S, Steuer C, Chen Z, Saba NF, Belani CP, Khuri FR, Ramalingam SS. Bevacizumab in combination with taxane versus non-taxane containing regimens for advanced/nonsquamous non-small cell lung cancer: a systematic review. J Thorac Oncol. 2015;10(8):1142–7.  https://doi.org/10.1097/JTO.0000000000000572.CrossRefPubMedGoogle Scholar
  27. 27.
    Patel JD, Bonomi P, Socinski MA, Govindan R, Hong S, Obasaju C, Pennella EJ, Girvan AC, Guba SC. Treatment rationale and study design for the PointBreak study: a randomized, open-label phase III study of pemetrexed/carboplatin/bevacizumab followed by maintenance pemetrexed/bevacizumab versus paclitaxel/carboplatin/bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small cell lung cancer. Clin Lung Cancer. 2009;10(4):252–6.  https://doi.org/10.3816/CLC.2009.n.035.CrossRefPubMedGoogle Scholar
  28. 28.
    Barlesi F, Scherpereel A, Rittmeyer A, Pazzola A, Ferrer Tur N, Kim JH, Ahn MJ, Aerts JG, Gorbunova V, Vistrom A, Wong EK, Perez-Moreno P, Mitchell L, Groen HJM. Randomized phase III trial of maintenance bevacizumab, with or without pemetrexed after first-line induction with and pemetrexed in advanced non-squamous non-small cell lung cancer: AVAPERL (MO22089). J Clin Oncol. 2013;31(24):3004–11.  https://doi.org/10.1200/JCO.2012.42.3749.CrossRefPubMedGoogle Scholar
  29. 29.
    Herbst RS, Ansari R, Bustin F, Flynn P, Hart L, Otterson GA, Vlahovic G, Soh C-H, O’Connor P, Hainsworth J. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. Lancet. 2011;377(9780):1846–54.  https://doi.org/10.1016/S0140-6736(11)60545-X.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li M, Kroetz DL. Bevacizumab-induced hypertension: clinical and molecular understanding. Pharmacol Ther. 2018;182:152–60.  https://doi.org/10.1016/j.pharmthera.2017.08.012.CrossRefPubMedGoogle Scholar
  31. 31.
    Genentech Inc. Avastin prescribing information. 2016. https://www.gene.com/download/pdf/avastin_prescribing.pdf.
  32. 32.
    Marrs J, Zubal BA. Oncology nursing in a new era: optimizing treatment with bevacizumab. Clin J Oncol Nurs. 2009;13(5):564–72.  https://doi.org/10.1188/09.CJON.564-572.CrossRefPubMedGoogle Scholar
  33. 33.
    Maitland ML, Bakris GL, Black HR, Chen HX, Durand JB, Elliott WJ, Ivy SP, Cardiovascular Toxicities Panel Convened by the Angiogenesis Task Force of the National Cancer Institute Investigational Drug Steering Committee. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102(9):596–604.  https://doi.org/10.1093/jnci/djq091.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49(2):186–93.  https://doi.org/10.1053/j.ajkd.2006.11.039.CrossRefPubMedGoogle Scholar
  35. 35.
    Yang ZY, Simari RD, Perkins ND, San H, Gordon D, Nabel GJ, Nabel EG. Role of p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury. Proc Natl Acad Sci. 1996;93(15):7905–10.CrossRefGoogle Scholar
  36. 36.
    Izzedine H, Ederhy S, Goldwasser F, Soria JC, Milano G, Cohen A, Khayat D, Spano JP. Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol. 2009;20(5):807–15.  https://doi.org/10.1093/annonc/mdn713.CrossRefPubMedGoogle Scholar
  37. 37.
    Langenberg MHG, van Herpen CML, De Bono J, Schellens JHM, Unger C, Hoekman K, Blum HE, Voest EE. Effective strategies for management of hypertension after vascular endothelial growth factor signaling inhibition therapy: results from a phase II randomized, factorial, double-blind study of cediranib in patients with advanced solid tumors. J Clin Oncol. 2009;27(36):6152–9.  https://doi.org/10.1200/JCO.2009.22.2273.CrossRefPubMedGoogle Scholar
  38. 38.
    Neill, T.A. Reversible posterior leukoencephalopathy syndrome. 2018. http://www.uptodate.com. Accessed 25 Jan 2018.
  39. 39.
    Hinchey J, Chaves C, Appignani B, Breen J, Pao L, Wang A, Pessin MS, Lamy C, Mas J-L, Caplan LR. A reversible leukoencephalopathy syndrome. N Engl J Med. 1996;334(8):494–500.  https://doi.org/10.1056/NEJM199602223340803.CrossRefPubMedGoogle Scholar
  40. 40.
    Choueiri TK, Sonpavde G. Toxicity of molecularly targeted antiangiogenic agents: non-cardiovascular effects. 2017. http://www.uptodate.com. Accessed 15 Sept 2017.
  41. 41.
    Sclafani F, Giuseppe G, Mezynski J, Collins C, Crown J. Reversible posterior leukoencephalopathy syndrome in breast cancer. J Clin Oncol. 2012;30(26):e257–9.  https://doi.org/10.1200/JCO.2011.38.8942.CrossRefPubMedGoogle Scholar
  42. 42.
    Strandgaard S, Paulson OB. Cerebral autoregulation. Stroke. 1984;15(3):413–6.  https://doi.org/10.1161/01.STR.15.3.413.CrossRefPubMedGoogle Scholar
  43. 43.
    Bastos B, Ibrahim M, Hoffman J, Kernan W, Pinto D. Reversible posterior leukoencephalopathy syndrome secondary to bevacizumab. J Hematol Oncol Pharm. 2011;1(2):1–8.Google Scholar
  44. 44.
    Marinella MA, Markert RJ. Reversible posterior leucoencephalopathy syndrome associated with anticancer drugs. Intern Med J. 2009;39(12):826–34.  https://doi.org/10.1111/j.1445-5994.2008.01829x.CrossRefPubMedGoogle Scholar
  45. 45.
    Vaughn C, Zhang L, Schiff D. Reversible posterior leukoencephalopathy syndrome in cancer. Curr Oncol Rep. 2008;10(1):86–91.CrossRefGoogle Scholar
  46. 46.
    Shord SS, Bresler LR, Tierney LA, Cuellar S, Geroge A. Understanding and managing the possible adverse effects associated with bevacizumab. Am J Health Syst Pharm. 2009;66(11):999–1013.  https://doi.org/10.2146/ajhp080455.CrossRefPubMedGoogle Scholar
  47. 47.
    Wu S, Kim C, Baer L, Zhu X. Bevacizumab increased risk for severe proteinuria in cancer patients. J Am Soc Nephrol. 2010;21(8):1381–9.  https://doi.org/10.1681/ASN.2010020167.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D, Soria JC. VEGF signalling inhibition-induced proteinuria: mechanisms, significance and management. Eur J Cancer. 2010;46(2):439–48.  https://doi.org/10.1016/J.EJCA.2009.11.001.CrossRefPubMedGoogle Scholar
  49. 49.
    Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Quaggin SE. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.  https://doi.org/10.1056/NEJMoa0707330.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Kabbinavar F. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small cell lung cancer. J Clin Oncol. 2004;22(11):2184–91.  https://doi.org/10.1200/JCO.2004.11.022.CrossRefPubMedGoogle Scholar
  51. 51.
    Maynard SE, Min JY, Merchan J, Lim K-H, Li J, Mondal S, Libermann TA, Karumanchi SA. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.  https://doi.org/10.1172/JCI17189.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bollee G, Patey N, Cazajous G, Robert C, Goujon J-M, Fakhouri F, Bruneval P, Noel L-H, Knebelmann B. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant. 2009;24(2):682–5.  https://doi.org/10.1093/ndt/gfn657.CrossRefPubMedGoogle Scholar
  53. 53.
    George BA, Zhou XJ, Toto R. Nephrotic syndrome after bevacizumab: case report and literature review. Am J Kidney Dis. 2007;49(2):e23–9.  https://doi.org/10.1053/j.ajkd.2006.11.024.CrossRefPubMedGoogle Scholar
  54. 54.
    Dincer M, Altundag K. Angiotensin-converting enzyme inhibitors fbevacuzmab-induced hypertension. Ann Pharmacother. 2006;40(12):2278–9.  https://doi.org/10.1345/aph.1H244.CrossRefPubMedGoogle Scholar
  55. 55.
    Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T, Ruff P, Allegra C. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30(28):3499–506.  https://doi.org/10.1200/JCO.2012.42.8201.CrossRefPubMedGoogle Scholar
  56. 56.
    Zangari M, Fink LM, Elice F, Zhan F, Adcock DM, Tricot GJ. Thrombotic events in patients with cancer receiving antiangiogene agents. J Clin Oncol. 2009;27(29):4865–73.  https://doi.org/10.1200/JCO.2009.22.3875.CrossRefPubMedGoogle Scholar
  57. 57.
    Mir O, Mouthon L, Alexandre J, Mallion J-M, Deray G, Guillevin L, Goldwasser F. Bevacizumab-induced cardiovascular events: a consequence of cholesterol emboli syndrome? J Natl Cancer Inst. 2007;99(1):85–6.  https://doi.org/10.1093/jnci/djk011.CrossRefPubMedGoogle Scholar
  58. 58.
    Choueiri TK, Sonpavde G. Toxicity of molecularly targeted antiangiogenic agents: cardiovascular effects. 2017. http://www.uptodate.com. Accessed 15 Sept 2017.
  59. 59.
    Han ES, Monk BJ. What is the risk of bowel perforation associated with bevacizumab therapy in ovarian cancer? Gynecol Oncol. 2007;105(1):3–6.  https://doi.org/10.1016/j.ygyno.2007.01.038.CrossRefPubMedGoogle Scholar
  60. 60.
    Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7(6):475–85.  https://doi.org/10.1038/nrc2152.CrossRefPubMedGoogle Scholar
  61. 61.
    Ganapathi AM, Westmoreland T, Tyler D, Mantyh CR. Bevacizumab-associated fistula formation in postoperative colorectal cancer patients. J Am Coll Surg. 2012;214(4):582–8.  https://doi.org/10.1016/j.jamcollsurg.2011.12.030.CrossRefPubMedGoogle Scholar
  62. 62.
    Cortes J, Caralt M, Delaloge S, Cortes-Funes H, Pierga JY, Pritchard KI, Bollag DT, Miles DW. Safety of bevacizumab in metastatic breast cancer patients undergoing surgery. Eur J Cancer. 2012;48(4):475–81.  https://doi.org/10.1016/j.ejca.2011.11.021.CrossRefPubMedGoogle Scholar
  63. 63.
    Hapani S, Sher A, Chu D, Wu S. Increased risk of serious hemorrhage with bevacizumab in cancer patients: a meta-analysis. Oncology. 2010;79:27–38.  https://doi.org/10.1159/000314980.CrossRefPubMedGoogle Scholar
  64. 64.
    Lai X-X, Xu R-A, Li Y-P, Yang H. Risk of adverse events with bevacizumab addition to therapy in advanced non-small-cell lung cancer: a meta-analysis of randomized controlled trials. Onco Targets Ther. 2016;9:2421–8.CrossRefGoogle Scholar
  65. 65.
    Gridelli C, Maione P, Rossi A, De Marinis F. The role of bevacizumab in the treatment of non-small cell lung cancer: current indications and future developments. Oncologist. 2007;12:1183–93.CrossRefGoogle Scholar
  66. 66.
    Spratlin J, Cohen R, Eadens M, Gore L, Camidge D, Diab S, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1Monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 2010;28(5):780–7.CrossRefGoogle Scholar
  67. 67.
    Fuchs C, Tomasek J, Yong C, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-esophageal junction adenocarcinoma (REGARD): an international, randomized multicenter, placebo-controlled, phase 3 trial. Lancet. 2014;383(9911):31–9.CrossRefGoogle Scholar
  68. 68.
    Cyramza (ramucirumab) [prescribing information]. Indianopolis, IN: Eli Lilly and Company. http://pi.lilly.com/us/cyramza-pi.pdf.
  69. 69.
    Garon E, Ciuleanu T, Arrieta O, Prabhash K, Syrigos K, Goksel T, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomized phase 3 trial. Lancet. 2014;384(9944):665–73.  https://doi.org/10.1016/S0140-6736(14)60845-X.CrossRefPubMedGoogle Scholar
  70. 70.
    Reck M, Paz-Ares L, Bidoli P, Cappuzzo F, Dakhil S, Moro-Sibilot D, Borghaei H, Johnson M, Jotte R, Pennell NA, Shepherd FA, Tsao A, Thomas M, Carter GC, Chan-Diehl F, Alexandris E, et al. Outcomes in patients with aggressive or refractory disease from REVEL: a randomized phase III study of docetaxel with ramucirumab or placebo for second-line treatment of stage IV non-small-cell lung cancer. Lung Cancer. 2017;112:181–7.  https://doi.org/10.1016/j.lungcan.2017.07.038.CrossRefPubMedGoogle Scholar
  71. 71.
    Avastin (bevacizumab) [prescribing information]. Genentech. https://www.avastin-hcp.com.
  72. 72.
    Wang ZP, Zhang HF, Zhang F, Hu BL, Wei HT, Guo YY. Bevacizumab did not reduce the risk of anemia associated with chemotherapy: an up-to-date meta-anlaysis. Eur J Clin Pharmacol. 2015;71(5):517–24.  https://doi.org/10.1007/s00228-015-1818-y.CrossRefPubMedGoogle Scholar
  73. 73.
    National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE), Version 4.0. June 2010. National Institutes of Health, National Cancer Institute. http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.
  74. 74.
    Maitland M, Bakris G, Black H, Chen H, Durand J, Elliott W, Ivy S, Leier C, Lindenfeld J, Liu G, Remick S, Steingart R, Tang W. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. JNCI: J Natl Cancer Inst. 2010;102(9):596–604.CrossRefGoogle Scholar
  75. 75.
    Grenon N. Managing toxicities associated with antiangiogenic biologic agents in combination with chemotherapy for metastatic colorectal cancer. Clin J Oncol Nurs. 2013;17(4):425–33.CrossRefGoogle Scholar
  76. 76.
    Thompson K. Hemoptysis. Cancer Therapy Advisor. 2017. http://www.cancertherapyadvisor.com/hospital-medicine/hemoptysis/article/602521/. Accessed 10 Mar 2018.
  77. 77.
    Damron B, Brant J, Belansky H, Friend P, Samsonow S, Schaal A. Putting evidence into practice. Clin J Oncol Nurs. 2009;13(5):573–83.CrossRefGoogle Scholar
  78. 78.
    Rushing J. Managing epistaxis. Nurs Crit Care. 2011;6(2):48.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Hematology/OncologyUniversity of California San Diego Moores Cancer CenterLa JollaUSA
  2. 2.Department of Thoracic/Head and Neck Medical OncologyM.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations