Advertisement

Outstanding Efficacy of Essential Oils Against Oral Pathogens

  • Jelena Marinković
  • Tatjana Marković
  • Biljana Miličić
  • Marina SokovićEmail author
  • Ana Ćirić
  • Dejan Marković
Chapter

Abstract

The essential oils (EOs), 30 tested on Streptococcus sanguinis and 21 on Streptococcus salivarius, expressed satisfactory antimicrobial activity (MIC ≤ 250 μL mL−1) on clinical isolates or corresponding referent strains (ATCC 10556 and ATCC 9222). S. sanguinis was more sensitive than S. salivarius on cineole-rich lacking thymol oils, while S. salivarius was more sensitive than S. sanguinis on thymol-rich lacking cineole oils. Analysis of the MIC values within the groups (MIC-strong or MIC-good) revealed that the clinical isolates of both Streptococcus species generally show lower sensitivity to EOs than their corresponding referent strains. Analysis of data for MIC-strong EOs tested on both ATCC Streptococcus strains revealed that in the class of monoterpene hydrocarbons, one should look for the presence of myrcene, α-thujone, α-phellandrene, and o-cymene, while in the class of oxygenated monoterpenes, the desired constituents should be camphor, 1,8-cineole, carvacrol, eugenol, and linalyl acetate.

The aim of this chapter is to present EOs with the most significant in vitro activity against Streptococcus sanguinis and Streptococcus salivarius, major human oral pathogens, and to estimate which of their constituents might contribute to desired activity, as “markers compounds.”

Keywords

Streptococcus sanguinis Streptococcus salivarius Essential oil Antimicrobials ATCC strain Clinical isolate 

Notes

Acknowledgments

The authors appreciate financial support of the Ministry of Education, Science and Technological Development of Republic of Serbia (Grants № 172026 and 173032).

References

  1. Abbaszadegan A, Sahebi S, Gholami A, Delroba A, Kiani A, Iraji A, Abott PV (2016) Time-dependent antibacterial effects of Aloe vera and Zataria multiflora plant essential oils compared to calcium hydroxide in teeth infected with Enterococcus faecalis. J Investig Clin Dent 7:93–101PubMedCrossRefPubMedCentralGoogle Scholar
  2. Araya M, Morelli L, Reid G, Sanders M, Stanton C, Pineiro M, Ben Embarek P (2002) Guidelines for the evaluation of probiotics in food. London: Report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in foodGoogle Scholar
  3. Bajaj JS (2016) Review article: potential mechanisms of action of rifaximin in the management of hepatic encephalopathy and other complications of cirrhosis. Aliment Pharmacol Ther 43:11–26PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barbour A, Philip K, Muniandy S (2013) Enhanced production, purification, characterization and mechanism of action of salivaricin 9 lantibiotic produced by Streptococcus salivarius NU10. PLoS One 8(10):e77751PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barretto C, Alvarez-Martin P, Foata F, Renault P, Berger B (2012) Genome sequence of the lantibiotic bacteriocin producer Streptococcus salivarius strain K12. J Bacteriol 194:5959–5960PubMedPubMedCentralCrossRefGoogle Scholar
  6. Becerril R, Nerin C, Gomez-Lus R (2012) Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathog Dis 9:699–705PubMedCrossRefPubMedCentralGoogle Scholar
  7. Berkiten M, Okar I, Berkiten R (2000) In vitro study of the penetration of Streptococcus sanguis and Prevotella intermedia strains into human dentinal tubules. J Endod 26:236–239PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bernardes WA, Lucarini R, Tozatti MG et al (2010) Antibacterial activity of the essential oil from Rosmarinus officinalis and its major components against oral pathogens. Z Naturforsch C 65:588–593PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bersan SMF, Galvao LCC, Goes VFF et al (2014) Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement Altern Med 14:451PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bogojevic J, Nikolic M, Markovic T, Ciric A, Markovic D (2016) Analysis of chemical composition of the most efficient essential oils towards Enterococcus faecalis referent strain ATCC 29212 and clinical isolates. Med Raw Mater 36:3–25Google Scholar
  11. Borges MCL, Sesso MLT, Roberti LR, Oliveira M, Nogueira RD, Geraldo-Martins VR, Ferriani VP (2015) Salivary antibody response to streptococci in preterm and fullterm children: a prospective study. Arch Oral Biol 60:116–125PubMedCrossRefPubMedCentralGoogle Scholar
  12. Burton JP, Drummond BK, Chilcott CN, Tagg JR, Thomson WM, Hale JDF, Wescombe PA (2013) Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J Med Microbiol 62:875–884PubMedCrossRefPubMedCentralGoogle Scholar
  13. Carlsson J, Edlund MB (1987) Pyruvate oxidase in Streptococcus sanguis under various growth conditions. Oral Microbiol Immunol 2:10–14PubMedCrossRefPubMedCentralGoogle Scholar
  14. Carlsson J, Iwami Y, Yamada T (1983) Hydrogen peroxide excretion by oral Streptococci and effect of lactoperoxidase–thiocyanate–hydrogen peroxide. Infect Immun 40:70–80PubMedPubMedCentralGoogle Scholar
  15. Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM (2000) Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun 68:4018–4023PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cha JD (2007) Chemical composition and antibacterial activity against oral bacteria by the essential oil of Artemisia iwayomogi. J Bacteriol Virol 37:129–136CrossRefGoogle Scholar
  17. Cha JD, Jung EK, Kil BS, Lee AY (2007) Chemical composition and antibacterial activity of essential oil from Artemisia freddei. J Microbiol Biotechnol 17:2061–2065PubMedPubMedCentralGoogle Scholar
  18. Chen YY, Clancy KA, Burne RA (1996) Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect Immun 64:585–592PubMedPubMedCentralGoogle Scholar
  19. CLSI (2013) Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement. CLSI document M100-S23. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  20. Cosentino S, Tuberoso CI, Pisano B, Satta M, Mascia V, Arzedi E et al (1999) In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29:130–135PubMedCrossRefGoogle Scholar
  21. Crevelin EJ, Caixeta SC, Dias H, Groppo M, Cunha WR, Martins CHG, Crotti AEM (2015) Antimicrobial activity of the essential oil of Plectranthus neochilus against cariogenic bacteria. Evid Based Complement Alternat Med 2015:102317PubMedPubMedCentralCrossRefGoogle Scholar
  22. Delgado B, Fernandez PS, Palop A, Periago PM (2004) Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol 21:327–334CrossRefGoogle Scholar
  23. Di Filippo S, Delahaye F, Semiond B et al (2006) Current patterns of infective endocarditis in congenital heart disease. Heart 92:1490–1495PubMedPubMedCentralCrossRefGoogle Scholar
  24. Di Pierro F, Colombo M, Zanvit A, Rottoli AS (2016) Positive clinical outcomes derived from using Streptococcus salivarius K12 to prevent streptococcal pharyngotonsillitis in children: a pilot investigation. Drug Healthc Patient Saf 8:77–81PubMedPubMedCentralCrossRefGoogle Scholar
  25. Didry N, Dubreuil L, Pinkas M (1994) Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv 69:25–28PubMedCrossRefGoogle Scholar
  26. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316PubMedCrossRefGoogle Scholar
  27. Fouad AF, Kum K-Y, Clawson ML, Barry J, Abenoja C, Zhu Q, Caimano M, Radolf JD (2003) Molecular characterization of the presence of Eubacterium spp. and Streptococcus spp. in endodontic infections. Oral Microb Immunol 18:249–255CrossRefGoogle Scholar
  28. Fujimura S, Nakamura T (1979) Sanguicin, a bacteriocin of oral Streptococcus sanguis. Antimicrob Agents Chemother 16:262–265PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gajan EB, Aghazadeh M, Abashov R, Milani AS, Moosavi Z (2009) Microbial flora of root canals of pulpally-infected teeth: Enterococcus faecalis a prevalent species. J Dent Res Dent Clin Dent Prospects 3:24–27PubMedPubMedCentralGoogle Scholar
  30. Ge Y, Caufield PW, Fisch GS, Li Y (2008) Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. Caries Res 42:444–448PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gomes B, Pinheiro ET, Gade-Neto CR et al (2004) Microbiological examination of infected dental root canals. Oral Microbiol Immunol 19:71–76PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gregori G, Righi O, Risso P et al (2016) Reduction of group A beta-hemolytic streptococcus pharyngo-tonsillar infections associated with use of the oral probiotic Streptococcus salivarius K12: a retrospective observational study. Ther Clin Risk Manag 12:87–92PubMedPubMedCentralCrossRefGoogle Scholar
  33. Heng NC, Haji-Ishak NS, Kalyan A et al (2011) Genome sequence of the bacteriocin producing oral probiotic Streptococcus salivarius strain M18. J Bacteriol 193:6402–6403PubMedPubMedCentralCrossRefGoogle Scholar
  34. Herrero ER, Slomka V, Bernaerts K et al (2016) Antimicrobial effects of commensal oral species are regulated by environmental factors. J Dent 47:23–33PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, Tagg JR (2007) Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 73:1107–1113PubMedCrossRefGoogle Scholar
  36. Jacinito RC, Gomes BP, Ferraz CC, Zaia AA, Filho FJ (2003) Microbiological analysis of infected root canal from symptomatic and asymptomatic teeth with periapical periodontitis and the antimicrobial susceptibility of some isolated anaerobic bacteria. Oral Microbiol Immunol 18:285–292CrossRefGoogle Scholar
  37. Juliano C, Mattana A, Usai M (2000) Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel growing wild in Sardinia. J Essent Oil Res 12:516–522CrossRefGoogle Scholar
  38. Juven BJ, Kanner J, Schved F, Weisslowicz H (1994) Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol 76:626–631PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kaci G, Goudercourt D, Dennin V et al (2014) Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol 80:928–934PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kadowaki M, Hashimoto M, Nakashima M, Fukata M, Odashiro K, Uchida Y, Shimono N (2013) Radial mycotic aneurysm complicated with infective endocarditis caused by Streptococcus sanguinis. Intern Med 52:2361–2365PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kaneko F, Togashi A, Saito S et al (2011) Behcet’s disease (Adamantiades-Behcet’s disease). Clin Dev Immunol 2011:681956PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kao YT, Shih CM, Tsao NW, Lin FY, Chang NC, Huang CY (2013) Subacute bacterial endocarditis presenting as left upper quadrant abdominal pain. J Chin Med Assoc 76:521–523PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kreth J, Merritt J, Shi W, Qi F (2005) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kreth J, Zhang Y, Herzberg MC (2008) Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190:4632–4640PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462PubMedCrossRefPubMedCentralGoogle Scholar
  46. Laura DM, Quinones A, Benenstein R et al (2014) Giant nonfamilial left atrial myxoma presenting with eye embolism and nonvalvular Streptococcus sanguinis endocarditis. J Am Coll Cardiol 63:2049PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lew HP, Quah SY, Lui JN, Bergenholtz G, Yu VSH, Tan KS (2015) Isolation of alkaline-tolerant bacteria from primary infected root canals. J Endod 41:451–456PubMedCrossRefPubMedCentralGoogle Scholar
  48. Li J, Helmerhorst EJ, Leone CW, Troxler RF et al (2004) Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97:1311–1318PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lysakowska ME, Ciebiada-Adamiec A, Sienkiewicz M, Sokolowski J, Banaszek K (2016) The cultivable microbiota of primary and secondary infected root canals, their susceptibility to antibiotics and association with the signs and symptoms of infection. Int Endod J 49:422–430PubMedCrossRefPubMedCentralGoogle Scholar
  50. Mahboubi M, Kazempour N (2011) Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil. Iran J Microbiol 3:194–200PubMedPubMedCentralGoogle Scholar
  51. Mancl AK, Kirsner SR, Ajdic D (2013) Wound biofilms: lessons learned from oral biofilms. Wound Repair Regen 21:352–362PubMedPubMedCentralCrossRefGoogle Scholar
  52. Marković T (2011) Etarska ulja i njihova bezbedna primena. Institut za proučavanje lekovitog bilja „dr Josif Pančić“, Beograd (in Serbian)Google Scholar
  53. Masdea L, Kulik EM, Hauser-Gerspach I, Ramseier AM, Filippi A, Waltimo T (2012) Antimicrobial activity of Streptococcus salivarius K12 on bacteria involved in oral malodour. Arch Oral Biol 57:1041–1047PubMedCrossRefPubMedCentralGoogle Scholar
  54. Mashima I, Nakazawa F (2014) The influence of oral Veillonella species on biofilms formed by Streptococcus species. Anaerobe 28:54–61PubMedCrossRefPubMedCentralGoogle Scholar
  55. Matsuo T, Shirakami T, Ozaki K, Nakanishi T, Yumoto H, Ebisu S (2003) An immunohistologic al study of the localization of bacteria invading root pulpal walls of teeth with periapical lesions. J Endod 29:194–200PubMedCrossRefGoogle Scholar
  56. McCarthy C, Snyder M, Parker RB (1965) The indigenous oral flora of man. The newborn to the 1-year old infant. Arch Oral Biol 10:61–70PubMedCrossRefGoogle Scholar
  57. Nikolić M (2015) Biological activity of selected essential oils towards Staphylococcus, Streptococcus, Lactobacillus, Pseudomonas, Enterococcus and Candida species isolated from human oral cavity. Ph.D. Thesis Dissertation, Faculty of Biology, University of BelgradeGoogle Scholar
  58. Nikolic M, Glamoclija J, Ferreira I et al (2014) Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind Crop Prod 52:183–190CrossRefGoogle Scholar
  59. Nikolić M, Marković T, Marković D, Glamočlija J, Ćirić A, Smiljković M, Soković M (2016) Antimicrobial activity of three Lamiaceae essential oils against common oral pathogens. Balk J Dent Med 20:160–167CrossRefGoogle Scholar
  60. Ohnishi Y, Kubo S, Ono Y et al (1995) Cloning and sequencing of the gene coding for dextranase from Streptococcus salivarius. Gene 156:93–96PubMedCrossRefGoogle Scholar
  61. Okahashi N, Nakata M, Sakurai A et al (2010) Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem Biophys Res Commun 391:1192–1196PubMedCrossRefGoogle Scholar
  62. Perez F, Calas P, de Falguerolles A, Maurette A (1993) Migration of a Streptococcus sanguis strain through the root dentinal tubules. J Endod 19:297–301PubMedCrossRefGoogle Scholar
  63. Power DA, Burton JP, Chilcott CN, Dawes PJ, Tagg JR (2008) Preliminary investigations of the colonization of upper respiratory tract tissues of infants using a pediatric formulation of the oral probiotic Streptococcus salivarius K12. Eur J Clin Microbiol Infect Dis 27:1261–1263PubMedCrossRefGoogle Scholar
  64. Provenzano JC, Rocas IN, Tavares LFD, Neves BC, Siqueira JF (2015) Short-chain fatty acids in infected root canals of teeth with apical periodontitis before and after treatment. J Endod 41:831–835PubMedCrossRefGoogle Scholar
  65. Rocas IN, Siqueira JF (2012) Characterization of microbiota of root canal-treated teeth with posttreatment disease. J Clin Microbiol 50:1721–1724PubMedPubMedCentralCrossRefGoogle Scholar
  66. Rolph HJ, Lennon A, Riggio MP, Saunders WP, MacKenzie D, Coldero L, Bagg J (2001) Molecular identification of microorganisms from endodontic infections. J Clin Microbiol 39:3282–3289PubMedPubMedCentralCrossRefGoogle Scholar
  67. Rosan B, Lamont RJ (2000) Dental plaque formation. Microbes Infect 2:1599–1607PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sakamoto M, Siqueira JF Jr, Rôças IN, Benno Y (2007) Bacterial reduction and persistence after endodontic treatment procedures. Oral Microbiol Immunol 22:19–23PubMedCrossRefPubMedCentralGoogle Scholar
  69. Seow WK, Lam JHC, Tsang AKL, Holcombe T, Bird PS (2009) Oral Streptococcus species in pre-term and full-term children—a longitudinal study. Int J Paediatr Dent 19:406–411PubMedCrossRefGoogle Scholar
  70. Shovelton DA (1959) Bacterial invasion of dentine around infected pulp canals: a preliminary report. Alabama Dent Rev 7:7–12Google Scholar
  71. Siqueira JF Jr, Rocas IN (2008) Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod 34:1291–1301PubMedCrossRefGoogle Scholar
  72. Siqueira JF Jr, Rôças IN (2009) Diversity of endodontic microbiota revisited. J Dent Res 88:969–981PubMedCrossRefGoogle Scholar
  73. Siqueira JF, As I, Paiva SSM, Magalhaes KM, Guimaraes-Pinto T (2007) Cultivable bacteria in infected root canals as identified by 16S rRNA gene sequencing. Oral Microbiol Immunol 22:266–271PubMedCrossRefGoogle Scholar
  74. Stauffacher S, Lussi A, Nietzsche S, Neuhaus KW, Eick S (2017) Bacterial invasion into radicular dentine—an in vitro study. Clin Oral Investig 21:1743PubMedCrossRefGoogle Scholar
  75. Stingu CS, Eschrich K, Rodloff AC, Schaumann R, Jentsch H (2008) Periodontitis is associated with a loss of colonization by Streptococcus sanguinis. J Med Microbiol 57:495–499PubMedCrossRefPubMedCentralGoogle Scholar
  76. Tagg JR (2008) Streptococci as effector organism for probiotic and replacement therapy. In: Versalovic J, Wilson M (eds) Therapeutic microbiology: probiotics and related strategies. ASM Press, Washington, DC, pp 61–81CrossRefGoogle Scholar
  77. Tagg JR, Dierksen KP (2003) Bacterial replacement therapy: adapting “germ warfare” to infection prevention. Trends Biotechnol 21:217–223PubMedCrossRefPubMedCentralGoogle Scholar
  78. Tatikonda A, Sudheep N, Biswas KP, Gowtham K, Pujari S, Singh P (2017) Evaluation of bacteriological profile in the apical root segment of the patients with primary apical periodontitis. J Contemp Dent Pract 18:44–48PubMedCrossRefPubMedCentralGoogle Scholar
  79. Thenisch NL, Bachmann LM, Imfeld T, Leisebach Minder T, Steurer J (2006) Are mutans streptococci detected in preschool children a reliable predictive factor for dental caries risk? A systematic review. Caries Res 40:366–374PubMedCrossRefPubMedCentralGoogle Scholar
  80. Ultee A, Gorris LGM, Smid EJ (1998) Bactericidal activity of carvacrol towards the food-borne pathogen Bacillus cereus. J Appl Microbiol 85:211–218PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ultee A, Bennik MHJ, Moezelar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68:1561–1568PubMedPubMedCentralCrossRefGoogle Scholar
  82. Walker GV, Heng NCK, Carne A, Tagg JR, Wescombe PA (2016) Salivaricin E and abundant dextranase activity may contribute to the anti-cariogenic potential of the probiotic candidate Streptococcus salivarius JH. Microbiology 162:476–486PubMedCrossRefPubMedCentralGoogle Scholar
  83. Wescombe PA, Hale JD, Heng NC et al (2012) Developing oral probiotics from Streptococcus salivarius. Future Microbiol 7:1355–1371PubMedCrossRefPubMedCentralGoogle Scholar
  84. Wilson W, Taubert KA, Gewitz M et al (2008) Prevention of infective endocarditis: guidelines from the American Heart Association. J Am Dent Assoc 139:3SPubMedCrossRefPubMedCentralGoogle Scholar
  85. Wisniewska-Spychala B, Sokalski J, Grajek S et al (2012) Dentigenous infectious foci – a risk factor of infective endocarditis. Med Sci Monit 18:CR93–CR104PubMedPubMedCentralCrossRefGoogle Scholar
  86. Yang TS, Liou ML, Hu TF, Peng CW, Liu TT (2013) Antimicrobial activity of the essential oil of Litsea cubeba on cariogenic bacteria. J Essent Oil Res 25(2):120–128CrossRefGoogle Scholar
  87. Zheng LY, Itzek A, Chen ZY, Kreth J (2011) Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis. Int J Oral Sci 3:82–89PubMedPubMedCentralCrossRefGoogle Scholar
  88. Zhu L, Kreth J (2010) Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis. Arch Oral Biol 55:385–390PubMedPubMedCentralCrossRefGoogle Scholar
  89. Zhu L, Kreth J (2012) The role of hydrogen peroxide in environmental adaptation of oral microbial communities. Oxid Med Cell Longev 2012:717843PubMedPubMedCentralCrossRefGoogle Scholar
  90. Zomorodian K, Ghadiri P, Saharkhiz MJ et al (2015) Antimicrobial activity of seven essential oils from iranian aromatic plants against common causes of oral infections. Jundishapur J Microbiol 8:17766eCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jelena Marinković
    • 1
  • Tatjana Marković
    • 2
  • Biljana Miličić
    • 3
  • Marina Soković
    • 4
    Email author
  • Ana Ćirić
    • 4
  • Dejan Marković
    • 5
  1. 1.“Vinča” Institute of Nuclear Sciences, Mike Petrovića Alasa 12University of BelgradeBelgradeSerbia
  2. 2.Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koščuška 1BelgradeSerbia
  3. 3.Department for Medical Statistics and Informatics, School of Dental Medicine, Dr. Subotića 1University of BelgradeBelgradeSerbia
  4. 4.Institute for Biological Research “Siniša Stanković”, Bulevar Despota Stefana 142University of BelgradeBelgradeSerbia
  5. 5.Department of Pediatric and Preventive Dentistry, School of Dental Medicine, Dr. Subotića 11University of BelgradeBelgradeSerbia

Personalised recommendations