Advertisement

Factors Influencing the Production and Chemical Composition of Essential Oils in Aromatic Plants from Brazil

  • Carmen Sílvia Fernandes BoaroEmail author
  • Maria Aparecida Ribeiro Vieira
  • Felipe Girotto Campos
  • Gisela Ferreira
  • Iván De-la-Cruz-Chacón
  • Márcia Ortiz Mayo Marques
Chapter

Abstract

Medicinal and aromatic plants are plants rich in specialized metabolites, mainly the essential oils, which have several functions in plant species and have biological activity. The chemical composition of these oils is influenced by biotic, abiotic, and genetic factors. The species of the families Lamiaceae (Mentha x piperita L, Ocimum selloi, Ocimum basilicum, Origanum vulgare, and Thymus vulgaris), Asteraceae (Lychnophora ericoides, Lychnophora pinaster, and Baccharis dracunculifolia), and Boraginaceae ( Varronia curassavica ) have essential oils with important biological activities influenced by the conditions of the environment. Other species studied by researchers around the world also reveal essential oils and biological activities with varying potentials.

Keywords

Specialized metabolism Population genetics Environmental conditions Mineral nutrition Biological activities Phytochemical variation 

Notes

Acknowledgments

The authors thank Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support for research and scholarship.

References

  1. Abdelwahab SI, Faridah QZ, Mariod AA et al (2010) Chemical composition, antioxidant and antibacterial properties of the essential oils of Etlingera elatior and Cinnamomum pubescens Kochummen. J Sci Food Agric 90:2682–2688PubMedCrossRefGoogle Scholar
  2. Adams RP (2017) Identification of essential oil components by gas chromatography, Texensis Publishing Gruver, TX USA.Google Scholar
  3. Ahmad A, Khan A, Akhtar F et al (2011) Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis 30:41–50PubMedCrossRefGoogle Scholar
  4. Akisue MK, Oliveira F, Moraes MS et al (1983) Caracterização farmacognóstica da droga e da tintura de Cordia verbenacea AL. DC. Boraginaceae. Revista de Ciências Farmacêuticas 5:69–82Google Scholar
  5. Alencar Filho JMT, Araújo LC, Oliveira AP et al (2017) Chemical composition and antibacterial activity of essential oil from leaves of Croton heliotropiifolius in different seasons of the year. Rev Bras Farmacogn 27:440–444CrossRefGoogle Scholar
  6. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709PubMedCrossRefGoogle Scholar
  7. Almeida JRGS, Facanali R, Vieira MAR (2010) Composition and antimicrobial activity of the leaf essential oils of Duguetia gardneriana Mart. and Duguetia moricandiana Mart. (Annonaceae). J Essent Oil Res 22:275–278CrossRefGoogle Scholar
  8. Al-Shehbaz IA (1991) The genera of Boraginaceae in the southeastern United States. J Arnold Arboretum Suppl 1:1–169Google Scholar
  9. Amdouni T, Ben Abdallah S, Msilini N et al (2016) Effect of salt stress on the antimicrobial activity of Ruta chalepensis essential oils. Acta Physiol Plant 38:147CrossRefGoogle Scholar
  10. Antunes MDC, Cavaco AM (2010) The use of essential oils for postharvest decay control. A review. Flavour Fragr J 25:351–366CrossRefGoogle Scholar
  11. Antunes T, Sevinate-Pinto I, Barroso JG et al (2004) Micromorphology of trichomes and composition of essential oil of Teucrium capitatum. Flavour Fragr J 19:336–340CrossRefGoogle Scholar
  12. Araújo FM, Dantas MCSM, Silva LS et al (2017) Antibacterial activity and chemical composition of the essential oil of Croton heliotropiifolius Kunth from Amargosa, Bahia, Brazil. Ind Crop Prod 105:203–206CrossRefGoogle Scholar
  13. Aslam F, Khaliq A, Matloob A et al (2017) Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology 27:1–24CrossRefGoogle Scholar
  14. Aznar A, Fernandez PS, Periago PM et al (2015) Antimicrobial activity of nisin, thymol, carvacrol and cymene against growth of Candida lusitaniae. Food Sci Technol Int Ibaraki 21:72–79CrossRefGoogle Scholar
  15. Baldin ELL, Dal Pogetto MHFA, Pavarini DP et al (2010) Composição química e atividade acaricida do óleo essencial de Lychnophora ericoides Mart. sobre Tetranychus urticae Koch (Acari: Tetranychidae). Boletín de Sanidad Vegetal, Plagas 36:125–132Google Scholar
  16. Belini CMB (2015) Baccharis dracunculifolia DC. (Asteraceae): composição do óleo essencial, diversidade e parâmetros genéticos. Thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Ciências AgronômicasGoogle Scholar
  17. Bertea CM, Schalk M, Karp F et al (2001) Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene. Arch Biochem Biophys 390:279–286PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bird A (2007) Perceptions of epigenetics. Nature (London) 447:396–398CrossRefGoogle Scholar
  19. Blank AF, Carvalho Filho JLS, Neto S et al (2004) Caracterização morfológica e agronômica de acessos de manjericão e alfavaca. Hortic Bras 22:113–116CrossRefGoogle Scholar
  20. Bolina C (2015) Metabolismo, Desenvolvimento e composição química de Varronia curassavica Jacq. em função da supressão da irrigação. Thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Ciências AgronômicasGoogle Scholar
  21. Bowers WS, Nishida R (1980) Juvocimenes: potent juvenile hormones mimics from sweet basil. Science 209:1030–1332PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006) Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54:1822–1828PubMedCrossRefPubMedCentralGoogle Scholar
  23. Braga PC, Alfieri M, Culici M, Dal Sasso M (2007) Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae. Mycoses 50:502–506PubMedCrossRefPubMedCentralGoogle Scholar
  24. Brun N, Colson M, Perrin A, Voirin B (1991) Chemical and morphological studies ofThe effects of ageing on monoterpene composition in Mentha x piperita leaves. Can J Bot 69:2271–2278CrossRefGoogle Scholar
  25. Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry & molecular biology of plants. Wiley, ChichesterGoogle Scholar
  26. Bueno MAS (2004) Níveis de fósforo no desenvolvimento e produção de óleo essencial de Thymus vulgaris L. cultivado em solução nutritiva. Dissertação, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  27. Búfalo J (2015) Mentha X Piperita, Ocimum Basilicum e Salvia Deserta, (Lamiaceae): Abordagens Fisiológicas E Fitoquímicas Mentha X Piperita, Ocimum Basilicum E Salvia Deserta, (Lamiaceae): Abordagens fisiológicas e fitoquímicas. thesis Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  28. Búfalo J, Rodrigues TM, de Almeida LFR et al (2016) PEG-induced osmotic stress in Mentha x piperita: structural features and metabolic responses. Plant Physiol Biochem 105:174–184PubMedCrossRefPubMedCentralGoogle Scholar
  29. Canceli RR, Evaldt ACP, Bauermann SG (2007) Contribuição da morfologia polínica da família Asteraceae Martinov. no Rio Grande do Sul – Parte I. Pesquisas Botânica São Leopoldo 58:347–374Google Scholar
  30. Carboni TR (2013) Análise de crescimento, trocas gasosas, potencial antioxidante e óleo essencial de Origanum vulgare L. ssp. vulgare. 2013. Dissertation, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  31. Carneiro MAA, Fernandes GW (1996) As relações conflituosas entre plantas e insetos, Herbivoria. Ciência Hoje 20:32–35Google Scholar
  32. Carreto CFP (2010) Atividade antimicrobiana de Mentha piperita L. sobre leveduras do gênero Candida. Dissertation, Faculdade de Odontologia de São José dos CamposGoogle Scholar
  33. Carvalho Júnior PM, Rojasa LB, Velasco J et al (2004) Chemical composition and antimicrobial activity of the essentialoil of Cordia verbenacea D.C. J Ethnopharmacol 95:297–301CrossRefGoogle Scholar
  34. Cassel E, Frizzo CD, Vanderlinde R, Atti-Serafini L, Lorenzo D, Dellacassa E (2000) E. Extraction of Baccharis oil by supercritical CO2. Montevideo, Uruguai. Ind Eng Chem Res 39:4803–4805CrossRefGoogle Scholar
  35. Cattelan MG (2015) Atividade antibacteriana de óleo essencial de orégano (Origanum vulgare): ações in vitro e in situ para preservação de alimento. Thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho”Google Scholar
  36. Chacón IV, Riley-Saldaña CA, González-Esquinca AR (2013) Secondary metabolites during early development in plants. Phytochemistry Reviews 12(1):47–64Google Scholar
  37. Chezem WR, Clay NK (2016) Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry 131:26–43PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cho RJ, Mindrinos M, Richards DR et al (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ciarmiello LF, Woodrow P, Fuggi A et al (2011) Chapter 13: Abiotic stress in plants – mechanisms and adaptations. In: Plant Genes for abiotic stress. InTech, RijekaGoogle Scholar
  40. Coile NC, Jones SB (1981) Lychnophora (Compositae: Vernonieae), a genus endemic to the Brazilian Planalto. Briffonia 33:528–542Google Scholar
  41. Cola M et al (2003) Óleo essencial de Ocimum selloi Benth.: atividade antiulcerogênica. Documentos IAC 74:120Google Scholar
  42. David EFS (2004) Níveis de fósforo no desenvolvimento e produção de óleo essencial de Mentha piperita L. cultivada em solução nutritiva. Dissertation, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  43. David EFS (2007) Desenvolvimento, trocas gasosas, rendimento e composição de óleo essencial de Mentha Piperita L cultivada em solução nutritiva com variação dos níveis de N, P, K E Mg. 2007. Thesis, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  44. David EF, Boaro CSF, Marques MOM (2006) Rendimento e composição do óleo essencial de Mentha piperita L., cultivada em solução nutritiva com diferentes níveis de fósforo. Rev Bras Plantas Med 8:183–188Google Scholar
  45. David EFS, Pirozzi DCZ, Braga JF et al (2007) Desenvolvimento do manjericão (Ocimum basilicum L.) cultivado em solução nutritiva com diferentes níveis de magnésio. Revista Brasileira de Plantas Medicinais 9:15–22Google Scholar
  46. De Fazio JL (2007) Influência de cálcio e de ethephon no desenvolvimento e produção de óleo essencial de menta (Mentha piperita L.), cultivada em solução nutritiva 2007. Dissertation, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  47. De Fazio JL (2011) Mentha piperita cultivada com variação de cálcio. Trocas gasosas e óleo essencial. 2011. Thesis, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  48. De Queiroz ACM, Rabello AM, Braga DL et al (2017) Cerrado vegetation types determine how land use impacts ant biodiversity. Biodivers Conserv 26:1–18Google Scholar
  49. De Vries J, Evers JB, Poelman EH (2017) Dynamic plant-plant-herbivore interactions govern plant growth–defence integration. Trends Plant Sci 22:329–337PubMedCrossRefPubMedCentralGoogle Scholar
  50. Degenhardt J, Hiltpoldb I, Köllner TG et al (2009) Restoring a maize root signal that attracts insectkilling nematodes to control a major pest. Proc Natl Acad Sci U S A 106:13213–13218PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dewick PM (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. Wiley, ChichesterCrossRefGoogle Scholar
  52. Dickison WC (2000) A Intergrative plant anatomy. Academic Press, LondonGoogle Scholar
  53. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316CrossRefGoogle Scholar
  54. Duarte AR, Naves RR, Santos SC et al (2010) Genetic and environmental influence on essential oil composition of Eugenia dysenterica. J Braz Chem Soc 21:1459–1467CrossRefGoogle Scholar
  55. Edris AE, Farrag ES (2003) Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Nahrung 47:117–121PubMedCrossRefGoogle Scholar
  56. Elgayyar M, Draughon FA, Golden DA, Mount JR (2001) Antimicrobial activity of essential oils from plants selected pathogenic and saprophytic microorganisms. J Food Prot 64:1019–1024PubMedCrossRefGoogle Scholar
  57. Facanali R, Colombo CA, Teixeira JPF et al (2015) Genetic and chemical diversity of native populations of Ocimum selloi Benth. Ind Crop Prod 76:249–257CrossRefGoogle Scholar
  58. Farzadfar S, Zarinkamar F, Hojati M (2017) Magnesium and manganese affect photosynthesis, essential oil composition and phenolic compounds of Tanacetum parthenium. Plant Physiol Biochem 112:207–217PubMedCrossRefGoogle Scholar
  59. Fernandes ES, Passos GF, Medeiros R et al (2007) Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur J Pharmacol 569:228–236PubMedCrossRefGoogle Scholar
  60. Fernandes MG, Gomes RA, Brito-Filho SG (2014) Characterization and anti-staphylococcal activity of the essential oil from Turnera subulata Sm. Revista Brasileira de Plantas Medicinais 16:534–538CrossRefGoogle Scholar
  61. Ferraz RPC, Cardoso GMB, Silva TB et al (2013) Antitumour properties of the leaf essential oil of Xylopia frutescens Aubl. (Annonaceae). Food Chem 141:542–547CrossRefGoogle Scholar
  62. Ferreira ME (2001) Técnicas e estratégias para a caracterização molecular e uso de recursos genéticos. In: Garray I, Dias BFS (eds) Conservação da Biodiversidade em ecossistemas tropicais: avanços conceituais e revisão de novas metodologias de avaliação e monitoramento. Petrópolis, Vozes, p 2001Google Scholar
  63. Figueiredo C, Barroso J, Pedro L et al (2007) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 22:206–213CrossRefGoogle Scholar
  64. Figueiredo A, Barroso JG, Pedro LG et al (2008) Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities. Curr Pharm Des 14:3120–3140PubMedCrossRefGoogle Scholar
  65. Flora do Brasil (2020) Flora do Brasil. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB110219. Accessed 31 July 2017
  66. Frankham R, Ballou JD, Briscoe DA, Mclnnes KH (2008) Fundamentos de Genética da Conservação. Sociedade Brasileira de Genética, Ribeirão Preto.Google Scholar
  67. Funk VA, Bayer RJ, Keeley S et al (2005) Everywhere but Antarctica: using a super tree to understand the diversity of the Compositae. Biologiske Skrifter 55:343–374Google Scholar
  68. Galindez G, Biganzoli F, Ortega-Baes P et al (2009) Fire responses of three co-occurring Asteraceae shrubs in a temperature savanna in South America. Plant Ecol 202:149–158CrossRefGoogle Scholar
  69. Giordani R, Regli P, Kaloustian J et al (2004) Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother Res 18:990–995PubMedCrossRefGoogle Scholar
  70. Gobbo-Neto L, Lopes NP (2007) Plantas Medicinais: Fatores de Influência no Conteúdo de Metabólitos Secundários. Química Nova 30:374–381CrossRefGoogle Scholar
  71. Goggin FL (2007) Plant-aphid interactions: molecular and ecological perspectives. Curr Opin Plant Biol 10:399–408PubMedCrossRefGoogle Scholar
  72. Gouinguené SP, Turlings TCJ (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1307PubMedPubMedCentralCrossRefGoogle Scholar
  73. Goutham MP (1980) Activity of some essential oils against dermatophytes. In: Lorenzi H, Matos FJA (eds) Plantas medicinais do Brasil: nativas e exóticas cultivadas. Nova Odessa: Instituto Plantarum, 2002Google Scholar
  74. Guenther E (1948) The essential oils: history-origin in plants production-analysis. Krieger Publishing, New YorkGoogle Scholar
  75. Gupta R (1991) Agrotechnology of medicinal plants. In: Wijessekera ROB (ed) The medicinal plant industry. CRC Press, Boca RatonGoogle Scholar
  76. Gupta AK, Mishra R, Singh AK et al (2016) Genetic variability and correlations of essential oil yield with agro-economic traits in Mentha species and identification of promising cultivars. Ind Crop Prod 95:726–732CrossRefGoogle Scholar
  77. Haber LL (2008) Caracterização da diversidade genética , via marcador microssatélite, e constituintes do óleo essencial de lychnophora pinaster mart. Thesis, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  78. Harley R, França F, Santos EP, Santos JS, Pastore JF (2015) Lamiaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB142. Accessed: 18 outubro 2016.
  79. Heiden G, Barbieri RL, Wasum RA et al (2007) A família Asteraceae em São Mateus do Sul, Paraná. Revista Brasileira de Biociências 5:249–251Google Scholar
  80. Hoagland DR, Arnon DI (1950) The water: culture method for growing plants without soil. Berkeley, CaliforniaGoogle Scholar
  81. Hussain AI, Anwar F, Sherazi STH, Przybylski R (2008) Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry 108(3):986–995PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ietswaart JH (1980) A taxonomic revision of the genus Origanum (Labiatae). Leiden University, LeidenCrossRefGoogle Scholar
  83. Isobe MTC (2012) Lychnophora pinaster: estudo anatômico, propagação e composição química dos óleos essenciais de populações. Dissertation, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  84. Jamieson MA, Burkle LA, Manson JS et al (2017) Global change effects on plant–insect interactions: the role of phytochemistry. Curr Opin Insect Sci 23:70–80PubMedCrossRefGoogle Scholar
  85. Joly AB (1993) Botânica: introdução à taxonomia vegetal. Companhia Editora Nacional, São PauloGoogle Scholar
  86. Kamanula JF, Belmain SR, Hall DR et al (2017) Chemical variation and insecticidal activity of Lippia javanica (Burm. f.) Spreng essential oil against Sitophilus zeamais Motschulsky. Ind Crops Prod 110:75–82CrossRefGoogle Scholar
  87. Karp A, Kresovich S, Bhat KV et al (1997) Molecular tools in plant genetic resources conservation a guide in the technologies. IPGRI, RomeGoogle Scholar
  88. Keita SM, Vincent C, Schmit JP et al (2001) Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab) (Coleoptera: Bruchidae). J Stored Prod Res 37:339–349PubMedCrossRefGoogle Scholar
  89. Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307CrossRefGoogle Scholar
  90. Kim SH, Lee S, Piccolo SR et al (2012) Menthol induces cell-cycle arrest in PC-3 cells by down-regulating G2/M genes, including polo-like kinase 1. Biochem Biophys Res Commun 422:436–441PubMedCrossRefGoogle Scholar
  91. Klaric MS, Kosalec I, Mastelic J et al (2007) Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett Appl Microbiol 44:36–42CrossRefGoogle Scholar
  92. Klimánková E, Holadová K, Hajslová J et al (2008) Aroma profiles of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem 107:464–472CrossRefGoogle Scholar
  93. Kopsell DA, Kopsell DE, Curran-Celentano J (2005) Carotenoid and chlorophyll pigments in sweet basil grown in the field and greenhouse. Hortscience 40:1230–1233CrossRefGoogle Scholar
  94. Kroymann J (2011) Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 14:246–251PubMedCrossRefGoogle Scholar
  95. Kumar S, Wahab N, Warikoo R (2011) Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac J Trop Biomed 1:85–88PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New YorkCrossRefGoogle Scholar
  97. Langenheim JH (2003) Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany. Timber Press, OregonGoogle Scholar
  98. Lawrence BM (1995) The isolation of aromatic materials from natural plant products. In: Tuley de Silva K (ed) A manual on the essential oil industry. Proceedings of the 3rd UNIDO workshop on essential oil and aroma chemical industries, pp 57–154Google Scholar
  99. Leal FP (2001) Desenvolvimento, produção e composição de óleo essencial da Mentha piperita L., cultivada em solução nutritiva com diferentes níveis de nitrogênio. Dissertation, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  100. Li Q, Wang X, Yang Z et al (2009) Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology 77:335–341PubMedCrossRefPubMedCentralGoogle Scholar
  101. Lima TC, Silva TKM, Silva FL et al (2014) Larvicidal activity of Mentha × villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere 104:37–43PubMedCrossRefPubMedCentralGoogle Scholar
  102. Loewenfeld C, Back F (1980) Guia de las hierbas y especias. Ediciones Omega, BarcelonaGoogle Scholar
  103. López A, Castro S, Andina MJ et al (2014) Insecticidal activity of microencapsulated Schinus molle essential oil. Ind Crop Prod 53:209–216CrossRefGoogle Scholar
  104. Lorenzi H, Matos FJA (2008) Plantas medicinais no Brasil: nativas e exóticas, 2nd edn. Instituto Plantarum, Nova OdessaGoogle Scholar
  105. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258PubMedCrossRefPubMedCentralGoogle Scholar
  106. Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373PubMedPubMedCentralCrossRefGoogle Scholar
  107. Marchese JÁ, Figueira GM (2005) O uso de tecnologias pré e pós-colheita e boas práticas agrícolas na produção de plantas medicinais e aromáticas. Revista Brasileira de Plantas Medicinais 7:86–96Google Scholar
  108. Marin M, Koko V, Duletić-Laušević S et al (2006) Glandular trichomes on the leaves of Rosmarinus officinalis: morphology, stereology and histochemistry. S Afr J Bot 72:378–382CrossRefGoogle Scholar
  109. Marotti M, Piccaglia R, Giovanelli E (1996) Differences in essential oil composition of Basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. J Agric Food Chem 44:3926–3929CrossRefGoogle Scholar
  110. Marques MOM, Facanali R, Haber LL et al (2012) Essential oils: history, biosynthesis, and agronomic aspects. In: Medicinal essential oils: chemical, pharmacological and therapeutic aspects. Nova Science Publishers, New YorkGoogle Scholar
  111. Marques MOM, Facanali R, Haber LL et al (2013) Óleos essenciais. In: Haber LL, Clemente FMVT (eds) Plantas aromáticas e condimentares: uso aplicado na horticultura. Embrapa, BrasíliaGoogle Scholar
  112. Marschner H (2012) Mineral nutrition of higher plants, 3rd edn. Academic Press, San DiegoGoogle Scholar
  113. Martins ER, Casali VWD, Barbosa LCA et al (1997) Essential oil in the taxonomy of Ocimum selloi Benth. J Braz Chem Soc 8:29–32CrossRefGoogle Scholar
  114. Matos-Rocha T, Cavalcanti MGS, Barbosa-Filho JM et al (2013) In vitro evaluation of schistosomicidal activity of essential oil of Mentha × villosa and some of its chemical constituents in adult worms of Schistosoma mansoni. Planta Med 79:1307–1312PubMedCrossRefPubMedCentralGoogle Scholar
  115. Matos-Rocha TJ, Cavalcanti MGS, Veras DL et al (2016) Ultrastructural changes in Schistosoma mansoni male worms after in vitro incubation with the essential oil of Mentha × villosa Huds. Revista Do Instituto de Medicina Tropical de Sao Paulo 58:2–7CrossRefGoogle Scholar
  116. Matos-Rocha TJ, Cavalcanti MGS, Barbosa-Filho JM et al (2017) Ultrastructural study of morphological changes in Schistosoma mansoni after in vitro exposure to the monoterpene rotundifolone. Sociedade Brasileira De Medicina Tropical 50:86–91CrossRefGoogle Scholar
  117. Medeiros R, Passos GF, Vitor CE et al (2007) Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br J Pharmacol 151:618–627PubMedPubMedCentralCrossRefGoogle Scholar
  118. Meldau S, Erb M, Baldwin IT (2012) Defence on demand: mechanisms behind optimal defence patterns. Ann Bot 110:1503–1514PubMedPubMedCentralCrossRefGoogle Scholar
  119. Melo WJ, Marques MOM (2000) Potencial do lodo de esgoto como fonte de nutrientes para as plantas. In: Bettiol W, Camargo OA (eds) Impacto ambiental do uso agrícola do lodo de esgoto. Embrapa Meio Ambiente, Jaguariúna, pp 109–141Google Scholar
  120. Milach SCK (1998) Principais tipos de marcadores moleculares e suas características. In: Milach SCK (ed) Marcadores moleculares em plantas. UFRGS, Porto AlegreGoogle Scholar
  121. Miller JS, Gottschling M (2007) Generic classification in the Cordiaceae (Boraginales): resurrection of the genus Varronia P Br. Taxon 56:163–169Google Scholar
  122. Millezi FM, Pereira MO, Batista NN et al (2012) Susceptibility of monospecies and dual-species biofilms Staphylococcus aureus and Escherichia coli to essential oils. J Food Saf 32:351–359CrossRefGoogle Scholar
  123. Millezi FM, Cardoso MG, Alves E et al (2013) Reduction of Aeromonas hydrophila biofilm on stainless steel surface by essential oils. Braz J Microbiol 44:73–80PubMedPubMedCentralCrossRefGoogle Scholar
  124. Mockute D, Bernotiene G, Judzentiene A (2001) The essential oil of Origanum vulgare L. ssp. vulgare growing wild in Vilnius district (Lithuania). Phytochemistry 57:65–69PubMedCrossRefGoogle Scholar
  125. Mockute D, Bernotiene G, Judzentiene A (2003) The β-ocimene chemotype of essential oils of the inflorescences and the leaves with stems from Origanum vulgare ssp. vulgare growing wild in Lithuania. Biochem Syst Ecol 31:269–278CrossRefGoogle Scholar
  126. Molt O, Trka A (1983) Parfum Kostmet 64: 488. apud Verdi LG 2005. Google Scholar
  127. Montanari I Jr (2000) Cultivo comercial de erva-baleeira. Revista Agroecologia Hoje 3:14–15Google Scholar
  128. Monteith GR, McAndrew D, Faddy HM et al (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530PubMedCrossRefGoogle Scholar
  129. Morhy L (1973) Metil-chavicol, cis e trans-Anetol no Óleo Essencial de Ocimum selloi Benth. An Acad Bras Ciênc 45:401–412Google Scholar
  130. Morris JA, Khettry A, Seitz EWM (1979) Antimicrobial activity of aroma chemicals and essential oils. J Am Oil Chem Soc 56:595–603PubMedCrossRefGoogle Scholar
  131. Mors WB, Rizzini CT, Pereira NA (2000) Medicinal plants of Brazil. Reference Publications, AlgonacGoogle Scholar
  132. Morshedloo MR, Craker LE, Salami A et al (2017) Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono- and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol Biochem 111:119–128PubMedCrossRefGoogle Scholar
  133. Munsi OS (1992) Nitrogen and phosphorus nutrition response in Japanese mint cultivation. Acta Hortic 306:436–443CrossRefGoogle Scholar
  134. Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters 584(14):2965–2973PubMedCrossRefGoogle Scholar
  135. Naghibi F, Mosaddegh M, Motamed SM et al (2005) Labiatae Family in folk medicine in Iran: from Ethnobotany to pharmacology. Iran J Pharm Res 2:63–79Google Scholar
  136. Nakajima J, Loeuille B, Heiden, G et al (2015) Asteraceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB55 Accessed 03 out. 2017
  137. Nascimento KF, Moreira FMF, Santos JA, Kassuia CAL, Croda JHR, Cardoso CAL, Vieira MC, Ruiz ALTG, Foglio MA, de Carvalho JE, Formagio ASN (2017) Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw and spathulenol. J Ethnopharmacol 210:351–358PubMedCrossRefGoogle Scholar
  138. Oliveira VB, Yamada LT, Fagg CW, Brandão MGL (2012) Native foods from Brazilian biodiversity as a source of bioactive compounds. Food Res Int 48:170–179CrossRefGoogle Scholar
  139. Oliveira MMM, Brugnera DF, Piccoli RH (2013) Essential oils of thyme and Rosemary in the control of Listeria monocytogenes in raw beef. Braz J Microbiol 44:1181–1188PubMedCrossRefGoogle Scholar
  140. Ormeno E, Fernandez C (2012) Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Curr Bioact Compd 8:71–79PubMedPubMedCentralCrossRefGoogle Scholar
  141. Pal PK, Mahajan M, Agnihotri VK (2016) Foliar application of plant nutrients and kinetin modifies growth and essential oil profile in Rosa damascena under acidic conditions. Acta Physiol Plant 38:176CrossRefGoogle Scholar
  142. Pandotra P, Gupta AP, Gandhiram et al (2013) Genetic and chemo-divergence in eighteen core collection of Zingiber officinale from North-West Himalayas. Sci Hortic 160:283–291CrossRefGoogle Scholar
  143. Park YK, Paredes-Guzman JF, Aguiar CL et al (2004) Chemical constituents in Baccharis dracunculifolia as the main botanical origin of southeastern Brazilian propolis. J Agric Food Chem 52:1100–1103PubMedCrossRefGoogle Scholar
  144. Park MJ, Gwak KS, Yang I et al (2009) Effect of citral, eugenol, nerolidol and alpha-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Fitoterapia 80:290–296PubMedCrossRefGoogle Scholar
  145. Pascual-Villalobos MJ, Ballesta-Acosta MC (2003) Chemical variation in an Ocimum basilicum germplasm collection and activity of the essential oils on Callosobruchus maculatus. Biochem Syst Ecol 31:673–679CrossRefGoogle Scholar
  146. Passos GF, Fernandes ES, da Cunha FM et al (2007) Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. J Ethnopharmacol 110:323–333PubMedCrossRefGoogle Scholar
  147. Pavarini DP, Nogueira EF, Callejon DR et al (2013) Novel bisabolane derivative from “arnica-da-serra” (Vernonieae: Asteraceae) reduces pro-nociceptive cytokines levels in LPS-stimulated rat macrophages. J Ethnopharmacol 148:993–998CrossRefGoogle Scholar
  148. Perigo CV, Torres RB, Bernacci LC et al (2016) The chemical composition and antibacterial activity of eleven Piper species from distinct rainforest areas in Southeastern Brazil. Ind Crop Prod 94:528–539CrossRefGoogle Scholar
  149. Prasad G, Kuman A, Singh AK, Bhattacharya AK et al (1986) Antimicrobial activity of essential oils of some Ocimum species and clove oil. Fitoterapia 57:429–432Google Scholar
  150. Primack RB, Rodrigues E (2001) Biologia da conservação. Planta, LondrinaGoogle Scholar
  151. Queiroz VS (2012) Avaliação in vitro do efeito dose-resposta da nanoemulsão do extrato etanólico de Lychnophora pinaster sobre células planctônicas e biofilme de Streptococcus mutans e sobre a desmineralização do esmalte dental ao redor de braquetes ortodônticos. Thesis, Universidade Estadual de CampinasGoogle Scholar
  152. Rana IS, Rana AS, Rajak RC (2011) Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol. Braz J Microbiol 42:1269–1277PubMedPubMedCentralCrossRefGoogle Scholar
  153. Rehman R, Hanif MA (2016) Biosynthetic factories of essential oils: the aromatic plants. Nat Prod Chem Res 04(04)Google Scholar
  154. Reigosa M, Gomes AS, Ferreira AG, Borghetti F (2013) Allelopathic research in Brazil. Acta Botanica Brasilica 27(4):629–646CrossRefGoogle Scholar
  155. Richards EJ (2006) Inherited epigenetic variation-revisiting soft inheritance. Mycorrhiza 7:395–401Google Scholar
  156. Rodrigues VEG (1988) Levantamento florístico e etnobotânico de plantas medicinais dos cerrados na região do Alto Rio Grande – Minas Gerais. Dissertation, Universidade Federal de LavrasGoogle Scholar
  157. Rice EL (1984) Alelopatia. Academic Press, New YorkGoogle Scholar
  158. Saggiorato AG, Gaio I, Treichel H et al (2012) Antifungal activity of basil essential oil (Ocimum basilicum L.): evaluation in vitro and on an Italian-type sausage surface. Food Bioproc Technol 5:378CrossRefGoogle Scholar
  159. Scavroni J, Boaro CSF, Marques MOM, Ferreira LC (2005) Yield and composition of the essential oil of Mentha piperita L. (Lamiaceae) grown with biosolid. Braz J Plant Physiol 17:345–352CrossRefGoogle Scholar
  160. Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711PubMedCrossRefGoogle Scholar
  161. Semir J (1991) Revisão taxonômica de Lychnophora Mart. (Vernoniaceae: Compositae). Thesis, Universidade de CampinasGoogle Scholar
  162. Semir J, Rezende AR, Monge M, Lopes NP (2011) As arnicas endêmicas das Serras do Brasil: Uma visão sobre a biologia e a química das espécies de Lychnophora (Asteraceae). UFOP, Ouro Branco (MG)Google Scholar
  163. Sforcin JM, Souza JPB, Silva Filho AA et al (2012) Baccharis dracunculifolia: Uma das principais fontes vegetais da própolis brasileira. Editora UNESP, São PauloGoogle Scholar
  164. Shao M, Czapiewski KV, Heiden AC et al (2001) Volatile organic compound emissions from Scots pine: mechanisms and description by algorithms. J Geophys Res 106:483–491Google Scholar
  165. Shao H, Guo Q, Chu L et al (2007) Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B: Biointerfaces 54:37–45PubMedCrossRefPubMedCentralGoogle Scholar
  166. Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208PubMedCrossRefPubMedCentralGoogle Scholar
  167. Sienkiewicz M, Lysakowska M, Denys P, Kowalczyk E (2012) The antimicrobial activity of Thyme essential oil against multidrug resistant clinical bacterial strains. Microb Drug Resist 18:137–148PubMedCrossRefPubMedCentralGoogle Scholar
  168. Sifola MI, Barbieri G (2006) Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci Hortic 108:408–413CrossRefGoogle Scholar
  169. Silva PSS (2013) Caracterização da composição química dos óleos essenciais de Lychnophora pinaster Mart. em função da sazonalidade Dissertation, Universidade Estadual Paulista Júlio de Mesquita Filho.Google Scholar
  170. Silva PSS (2016) Caracterização da diversidade genética e composição química de Lychnophora pinaster Mart. Thesis, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  171. Silva LE, Reis RA, Moura EA et al (2015) Plantas do Gênero Xylopia: Composição Química e Potencial Farmacológico. Revista Brasileira de Plantas Medicinais 17:814–826CrossRefGoogle Scholar
  172. Silvas PKJ, Syed NH, Valliyodan B, Nguyen HT (2013) Understanding abiotic stress tolerance mechanisms in soybean (Glycine max). Plant Physiol Biochem 85:1–16Google Scholar
  173. Simões CMO, Spitzer V (2000) Óleos voláteis. In: Farmacognosia: da planta ao medicamento. Universidade Federal do Rio Grande do Sul; Universidade Federal de Santa CatarinaGoogle Scholar
  174. Simões LN, Meideiros LCC, Heinzmann BM et al (2017) Essential oil of Lippia alba as a sedative and anesthetic for the sea urchin Echinometra lucunter (Linnaeus, 1758). Mar Freshw Behav Physiol 50:205–217CrossRefGoogle Scholar
  175. Singh B, Sharma RA (2015) Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. Biotech 5:129–151Google Scholar
  176. Sousa AAS, Soares PMG, Almeida ANS et al (2010) Antispasmodic effect of Mentha piperita essential oil on tracheal smooth muscle of rats. Rev Ethnopharmacol Commun 130:433–436CrossRefGoogle Scholar
  177. Souza VC, Lorenzi H (2008) Botânica Sistemática – Guia ilustrado para identificação das famílias de angiospermas da flora brasileira, baseado em APG II. PlantarumGoogle Scholar
  178. Stengel M, Binder A, Klebe O et al (2007) Topical menthol: stability of a sensory profile in a human surrogate model. Eur J Pain 11:59–S207CrossRefGoogle Scholar
  179. Stojkovic D, Soković M, Glamočlija J et al (2011) Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chem 128:1017–1022CrossRefGoogle Scholar
  180. Tabarelli M, Mantovani W (1999) A regeneração de uma floresta tropical montana após corte e queima, São Paulo. Rev Bras Biol 59:239–250CrossRefGoogle Scholar
  181. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, SunderlandGoogle Scholar
  182. Torres A et al (1996) A science of the future. In: World congress of Allelopa, Cadiz. Annals… Cidade: University of Cadiz, 1996. p. 16–20. Google Scholar
  183. Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832PubMedPubMedCentralGoogle Scholar
  184. Trombetta D, Castelli F, Sarpietro MG et al (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478PubMedPubMedCentralCrossRefGoogle Scholar
  185. Tsutiya MT (2000) Alternativas de disposição final de biossólidos gerados em estações de tratamentos de esgotos. In: Bettiol W, Camargo OA (eds) Impacto ambiental do uso agrícola do lodo de esgoto EMBRAPA Meio Ambiente, pp 69–105Google Scholar
  186. Umerie SC, Anaso HU, Anyasoro JC (1998) Insecticidal potentials of Ocimum basilicum leaf-extract. Biores Technol 64:237–239CrossRefGoogle Scholar
  187. Valeriano C, Oliveira TLC, Carvalho SM et al (2012) The sanitizing action of essential oil-based solutions against Salmonella enterica serotype Enteritidis S64 biofilm formation on AISI 304 stainless steel. Food Control 25:673–677CrossRefGoogle Scholar
  188. Valmorbida J, Boaro CSF, Marques MOM, Ferri AF (2006) Rendimento e composição química de óleos essenciais de Mentha piperita L . cultivada em solução nutritiva com diferentes concentrações de potássio. Rev Bras Plantas Med 8:56–61Google Scholar
  189. Vanderlinde FA, Costa EA, D’Angelo LCA (1994) Atividades farmacológicas gerais e atividade anti-espasmódica do extrato etanólico de Ocimum selloi Benth. (elixir paregórico). In: Simpósio de Plantas Medicinais do BrasilGoogle Scholar
  190. Vasques MCP (2007) Influência do magnésio no desenvolvimento, trocas gasosas e rendimento de óleo essencial de Mentha piperita L. cultivada em solução nutritiva. Dissertation, Universidade Estadual Paulista, BotucatuGoogle Scholar
  191. Vaz APA, Scaranari C, Rocha LA et al (2006) Biomassa e composição química de genótipos melhorados de espécies medicinais cultivadas em quatro municípios paulistas. Pesquisa Agropecuária Brasileira, Brasília 41:69–872CrossRefGoogle Scholar
  192. Verpoorte R (2000) Engineering the plant cell factory for secondary metabolite production. Trangenic Res 9:323–343CrossRefGoogle Scholar
  193. Vieira MAR, Marques MOM, Haber LL et al (2014) New loci of Lychnophora ericoides and transferability to Lychnophora pinaster, endangered medicinal species from Brazil. Genet Mol Res 13:10878–10882PubMedCrossRefPubMedCentralGoogle Scholar
  194. Vieira MAR, Marques MOM, Haber LL et al (2017) Perfil do óleo essencial de folhas de Lychnophora ericoides Mart coletadas em duas localidades de Minas Gerais. In: 9° Simpósio Brasileiro de Óleos EssenciaisGoogle Scholar
  195. Voirin B, Brun N, Bayet C (1990) Effects of daylength on the monoterpene composition of leaves of Mentha x piperita. Phytochemistry 29:749–755CrossRefGoogle Scholar
  196. Wang Y, Wang X, Yang Z et al (2012) Menthol inhibits the proliferation and motility of prostate cancer DU145 cells. Pathol Oncol Res 18:903–910PubMedCrossRefPubMedCentralGoogle Scholar
  197. Wink M (2016) Secondary metabolites, the role in plant diversification of Encyclopedia of. Evol Biol 4:1–9Google Scholar
  198. Ye Y, Liang X, Chen Y et al (2014) Carbon, nitrogen and phosphorus accumulation and partitioning, and C: N: P stoichiometry in late-season rice under different water and nitrogen managements. PLoS One 9:7Google Scholar
  199. Zucchi MI (2009) Diversidade genética em espécies medicinais. http://www.infobibos.com/Artigos/2009_4/DiversidadeGenetica/index.htm. Accessed: 11/6/2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carmen Sílvia Fernandes Boaro
    • 1
    Email author
  • Maria Aparecida Ribeiro Vieira
    • 1
  • Felipe Girotto Campos
    • 1
  • Gisela Ferreira
    • 1
  • Iván De-la-Cruz-Chacón
    • 2
  • Márcia Ortiz Mayo Marques
    • 3
  1. 1.Departamento de Botânica, IB, UNESP, Campus de BotucatuBotucatuBrazil
  2. 2.Laboratorio de Fisiología y Química Vegetal, Instituto de Ciencias BiológicasUniversidad de Ciencias y Artes de Chiapas (UNICACH)Tuxtla GutiérrezMexico
  3. 3.Centro de Recursos Genéticos Vegetais, Instituto Agronômico (IAC)CampinasBrazil

Personalised recommendations