Biotechnological Approaches to Increase Essential Oil Yield and Quality in Aromatic Plants: The Lavandula latifolia (Spike Lavender) Example. Past and Recommendations for the Future

  • Juan Segura
  • Jesús Muñoz-Bertomeu
  • Isabel Mendoza-Poudereux
  • Isabel ArrillagaEmail author


Increasing knowledge about isoprenoid biosynthesis pathways has provided new tools for aromatic plant breeding using biotechnological approaches. Notably, there are possibilities to modify essential oil profiles and enhance production of valuable monoterpenes. This attains a particular significance in Lavandula latifolia Medik. (spike lavender), one of the most important essential oil crops in Spain. This chapter summarizes work done to improve essential oil yield and quality by engineering: (1) the enzymes controlling regulatory steps of methyl-D-erythritol 4-phosphate (MEP) and mevalonic acid (MVA) pathways to increase C5 units employed for monoterpene biosynthesis and (2) the monoterpene synthases to produce changes in the qualitative profile of particular monoterpenes.


Lavandula latifolia Spike lavender Genetic engineering DXS DXR HMGR Monoterpene synthases Essential oil Monoterpene Cross-talk MEP and MVA pathways 



The Spanish Government (project AGL2002–00977) and the Valencia Regional Government (projects GV2001–020, Grupos 03/102, PROMETEO/2009/075, and PROMETEOII/2014/052) have funded this work. Predoctoral fellowship (FPU) to JMB and IMP are also acknowledged.


  1. Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y (2017) Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246:803–816PubMedCrossRefGoogle Scholar
  2. Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602PubMedCrossRefGoogle Scholar
  3. Aprotosoaie AC, Hăncianu M, Costache II, Miron A (2014) Linalool: a review on a key odorant molecule with valuable biological properties. Flavour Fragr J 29:193–219CrossRefGoogle Scholar
  4. Aprotosoaie AC, Gille E, Trifan A, Luca VS, Miron A (2017) Essential oils of Lavandula genus: a systematic review of their chemistry. Phytochem Rev 16:761–799CrossRefGoogle Scholar
  5. Arimura G, Matsui K, Koeduka T, Holopainen JK (2017) Biosynthesis and regulation of plant volatiles and their functional roles in ecosystem interactions and global environmental changes. In: Arimura G, Maffei M (eds) Plant specialized metabolism: genomics, biochemistry, and biological functions. CRC Press, Taylor & Francis Group, Boca Raton, pp 185–238Google Scholar
  6. Ashour M, Wink M, Gershenzon J (2010) Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. In: Wink M (ed) Biochemistry of plant secondary metabolism. Annu Plant Rev 40. Wiley-Blackwell, Oxford, pp 258–303CrossRefGoogle Scholar
  7. Bach TJ, Lichtenthaler HK (1983) Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant 9:50–60CrossRefGoogle Scholar
  8. Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31:1043–1055PubMedCrossRefGoogle Scholar
  9. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedCrossRefGoogle Scholar
  10. Beier RC, Byrd JA, Kubena LF, Hume ME, McReynolds JL, Anderson RC, Nisbet DJ (2014) Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: effects on poultry. Poult Sci 93:267–272PubMedCrossRefPubMedCentralGoogle Scholar
  11. Campos N, Boronat A (1995) Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell 7:2163–2174PubMedPubMedCentralCrossRefGoogle Scholar
  12. Carretero-Paulet L, Ahumada I, Cunillera N, Rodríguez-Concepción M, Ferrer A, Boronat A, Campos N (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5- phosphate reductoisomerase, the first committed enzyme of the 2-C- methyl-D- erythritol-4- phosphate pathway. Plant Physiol 129:1581–1591PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cavanagh HMA, Wilkinson IM (2002) Biological activities of lavender essential oil. Phytother Res 16:301–308PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229PubMedCrossRefPubMedCentralGoogle Scholar
  15. Córdoba E, Salmi M, León P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60:2933–2943PubMedCrossRefPubMedCentralGoogle Scholar
  16. Daviet L, Schalk M (2010) Biotechnology in plant essential oil production: progress and perspective in metabolic engineering of the terpene pathway. Flavour Fragr J 25:123–127CrossRefGoogle Scholar
  17. Despinasse Y, Fiorucci S, Antonczak S, Moja S, Bony A, Nicolè F, Baudino S, Magnard JL, Jullien F (2017) Bornyl-diphosphate synthase from Lavandula angustifolia: a major monoterpene synthase involved in essential oil quality. Phytochemistry 137:24–33PubMedCrossRefPubMedCentralGoogle Scholar
  18. Dudai N, Larkov O, Ravid U, Putiesky E, Lewinsohn E (2001) Developmental control of monoterpene content and composition in Micromeria fruticosa (L.) Druce. Ann Bot 88:349–354CrossRefGoogle Scholar
  19. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440CrossRefGoogle Scholar
  21. Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dušková E, Dušek K, Indrák P, Smékalová K (2016) Postharvest changes in essential oil content and quality of lavender flowers. Ind Crop Prod 79:225–231CrossRefGoogle Scholar
  23. El Alaoui C, Chemin J, Fechtali T, Lory P (2017) Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts. PLoS One 12:e0186864PubMedPubMedCentralCrossRefGoogle Scholar
  24. Enfissi EMA, Fraser PD, Lois L, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non- mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gershenzon J, McConkey M, Croteau R (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122:205–213PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gómez-Mateo M, Navarro C, Merino G, Valero A (2016) Evaluation of different Mediterranean essential oils as prophylactic agents in anisakidosis. Pharm Biol 55:456–461CrossRefGoogle Scholar
  27. Gonçalves S, Romano A (2013) In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites. Biotechnol Adv 31:166–174PubMedCrossRefGoogle Scholar
  28. Guevara-García A, San Román C, Arroyo A, Cortés ME, Gutiérrez-Nava ML, León P (2005) Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. Plant Cell 17:628–643PubMedPubMedCentralCrossRefGoogle Scholar
  29. Haig TJ, Haig TJ, Seal AN, Pratley JE, An M, Wu H (2009) Lavender as a source of novel plant compounds for the development of a natural herbicide. J Chem Ecol 35:1129–1136PubMedCrossRefGoogle Scholar
  30. Hallahan DL (2000) Monoterpenoid biosynthesis in glandular trichomes of labiate plants. Adv Bot Res 31:77–120CrossRefGoogle Scholar
  31. Harborne JB, Williams CA (2002) Phytochemistry of the genus Lavandula. In: Lis-Balchim M (ed) Lavender. Taylor & Francis Inc, New York, pp 86–99Google Scholar
  32. Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676PubMedCrossRefGoogle Scholar
  33. Henry LK, Thomas ST, Widhalm JR, Lynch JH, Davis TC, Kessler SA, Bohlman J, Dudareva N (2018) Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nat Plants 4:721–729PubMedCrossRefGoogle Scholar
  34. Herman A, Tambor K, Herman A (2016) Linalool affects the antimicrobial efficacy of essential oils. Curr Microbiol 72:165–172PubMedCrossRefGoogle Scholar
  35. Herraiz-Peñalver D, Cases MA, Varela F, Navarrete P, Sánchez-Vioque R, Usano-Alemany J (2013) Chemical characterization of Lavandula latifolia Medik. essential oil from Spanish wild populations. Biochem Syst Ecol 46:59–68CrossRefGoogle Scholar
  36. Ibrahim MA, Kainulainen P, Aflatuni A, Tiilikkala K, Holopainen JK (2001) Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: with special reference to limonene and its suitability for control insect pests. Agric Food Sci Finl 10:243–259CrossRefGoogle Scholar
  37. Irmisch S, Krause ST, Kunert G, Gershenzon J, Degenhardt J, Köllner TB (2012) The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biol 12:84PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222PubMedCrossRefGoogle Scholar
  39. Jones AMP, Shukla MR, Sherif SM, Brown PB, Saxena PK (2016) Growth regulating properties of isoprene and isoprenoid-based essential oils. Plant Cell Rep 35:91–102PubMedCrossRefGoogle Scholar
  40. Kanazawa A (2008) RNA silencing manifested as visibly altered phenotypes in plants. Plant Biotechnol 25:423–435CrossRefGoogle Scholar
  41. Kara N, Baydar H (2013) Determination of lavender and lavandin cultivars (Lavandula sp.) containing high quality essential oil in Isparta, Turkey. Turk J Field Crops 18:58–65Google Scholar
  42. Kim SK, Han GH, Seong W, Kim H, Kim SW, Lee DH, Lee SG (2016) CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38:228–240PubMedCrossRefGoogle Scholar
  43. Lane A, Boecklemann A, Woronuk GN, Sarker L, Soheil S (2010) A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 231:835–845PubMedCrossRefGoogle Scholar
  44. Lange BM, Ahkami A (2013) Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes-current status and future opportunities. Plant Biotech J 11:169–196CrossRefGoogle Scholar
  45. Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis EM, Lange I, Baker RC, Boydston RA, Croteau RB (2011) Improving peppermint essential oil yield and composition by metabolic engineering. Proc Natl Acad Sci U S A 108:16944–16949PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstain A, Weiss D (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 9:103–111CrossRefGoogle Scholar
  47. Leivar P, Antolin-Llovera M, Ferrero S, Closa M, Arro M, Ferrer A, Boronat A, Campos N (2011) Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2A. Plant Cell 23:1494–1511PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lesage-Meessen L, Bou M, Sigoillot JC, Faulds C, Lomascolo A (2015) Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology. Appl Microbiol Biotechnol 99:3375–3385PubMedCrossRefGoogle Scholar
  49. Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 27:1256–1265CrossRefGoogle Scholar
  50. Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lis-Balchin M (2002) Chemical composition of essential oils from different species, hybrids and cultivars of Lavandula. In: Lis-Balchin M (ed) Lavender. Taylor & Francis Inc, New York, pp 251–262Google Scholar
  52. Lobstein A, Couic-Marinier F (2017) Huile essentielle de Lavande officinale. Actual Pharm 565:57–60Google Scholar
  53. Lu X, Tang K, Ping P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci 7:1647PubMedPubMedCentralGoogle Scholar
  54. Lubbe A, Verpoorte R (2011) Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crop Prod 34:785–801CrossRefGoogle Scholar
  55. Lücker J, Bouwmeester HJ, Schwab W, Blaas J, van der Plas LHW, Verhoeven HA (2001) Expressionof Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside. Plant J 27:315–324PubMedCrossRefPubMedCentralGoogle Scholar
  56. Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci U S A 98:8915–8920PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373PubMedCrossRefPubMedCentralGoogle Scholar
  58. Manion CR, Widder RM (2017) Essentials of essential oils. Am J Health Syst Pharm 74:e153–e162PubMedCrossRefPubMedCentralGoogle Scholar
  59. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026PubMedPubMedCentralCrossRefGoogle Scholar
  60. Mendoza-Poudereux I, Muñoz-Bertomeu J, Arrillaga I, Segura J (2014a) Deoxyxylulose 5-phosphate reductoisomerase is not a rate-determining enzyme for essential oil production in spike lavender. J Plant Physiol 171:1564–1570PubMedCrossRefGoogle Scholar
  61. Mendoza-Poudereux I, Muñoz-Bertomeu J, Navarro A, Arrillaga I, Segura J (2014b) Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves. Metab Eng 23:136–144PubMedCrossRefPubMedCentralGoogle Scholar
  62. Mendoza-Poudereux I, Kutzner E, Huber C, Segura J, Eisenreich W, Arrillaga I (2015) Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender. Plant Physiol Biochem 95:113–120PubMedCrossRefPubMedCentralGoogle Scholar
  63. Muñoz-Bertomeu J, Arrillaga I, Ros R, Segura J (2006) Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol 142:890–900PubMedPubMedCentralCrossRefGoogle Scholar
  64. Muñoz-Bertomeu J, Arrillaga I, Segura J (2007a) Essential oil variation within and among natural populations of Lavandula latifolia and its relation to their ecological areas. Biochem Syst Ecol 35:479–488CrossRefGoogle Scholar
  65. Muñoz-Bertomeu J, Arrillaga I, Ros R, Segura J (2007b) Up- regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Plant Biotech J 5:746–758CrossRefGoogle Scholar
  66. Muñoz-Bertomeu J, Ros R, Arrillaga I, Segura J (2008) Expression of spearmint limonene synthase in transgenic spike lavender results in an altered mono-terpene composition in developing leaves. Metab Eng 10:166–177PubMedCrossRefPubMedCentralGoogle Scholar
  67. Nagata N, Suzuki M, Yoshida S, Muranaka T (2002) Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway. Planta 216:345–350PubMedCrossRefPubMedCentralGoogle Scholar
  68. Nebauer SG, Arrillaga I, del Castillo-Agudo L, Segura J (2000) Agrobacterium tumefaciens-mediated transformation of the aromatic shrub Lavandula latifolia. Mol Breed 6:539–552CrossRefGoogle Scholar
  69. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243PubMedCrossRefGoogle Scholar
  70. Re EB, Jones D, Learned RM (1995) Co-expression of native and introduced genes reveals cryptic regulation of HMG-CoA reductase expression in Arabidopsis. Plant J 7:771–784PubMedCrossRefGoogle Scholar
  71. Renaud ENC, Charles DJ, Simon JE (2001) Essential oil quantity and composition from 10 cultivars of organically grown Lavender and Lavandin. J Essent Oil Res 13:269–273CrossRefGoogle Scholar
  72. Rivas-Goday S, Rivas-Martínez S (1967) Matorrales y tomillares de la Península Ibérica comprendidos en la clase Ononido-Rosmarinetea Rr. – Bl. 1947. Anal Inst Bot Cavanilles 25:1–183Google Scholar
  73. Rivas-Martínez S (1979) Brezales y jarales de Europa occidental (Revisión Fitosociológica de las clases Calluno-ulicetea y Cisto-Lavanduletea). Lazaroa 1:5–127Google Scholar
  74. Rodríguez-Concepción M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5:1–15CrossRefGoogle Scholar
  75. Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089PubMedCrossRefGoogle Scholar
  76. Rohmer M (2003) Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl Chem 75:375–388CrossRefGoogle Scholar
  77. Salido S, Altarejos J, Nogueras M, Sánchez A, Luque P (2004) Chemical composition and seasonal variations of spike lavender oil from Southern Spain. J Essent Oil Res 16:206–210CrossRefGoogle Scholar
  78. Segura J, Calvo MC (1991) Lavandula spp. (lavender): in vitro culture, regeneration of plants, and the formation of essential oils and pigments. In: Bajaj YPS (ed) Medicinal and aromatic plants III, biotechnology in agriculture and forestry, vol 15. Springer-Verlag, Berlin-Heidelberg-New York, pp 283–310Google Scholar
  79. Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14:135–149PubMedPubMedCentralCrossRefGoogle Scholar
  80. Smigielski K, Prusinowska R, Krosowiak K, Sikora M (2013) Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender (Lavandula angustifolia). J Essent Oil Res 25:291–299CrossRefGoogle Scholar
  81. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304PubMedCrossRefPubMedCentralGoogle Scholar
  82. Tissier A, Morgan JA, Dudareva N (2017) Plant volatiles: Going “In” but not “Out” of trichome cavities. Trends Plant Sci 22:930–938PubMedCrossRefPubMedCentralGoogle Scholar
  83. Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679PubMedPubMedCentralCrossRefGoogle Scholar
  84. Tutin TO, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1972) Flora europea, vol 3. University Press, CambridgeGoogle Scholar
  85. Upson T (2002) The taxonomy of the genus Lavandula L. In: Lis-Balchin M (ed) Lavender: the genus Lavandula. Taylor & Francis, London, pp 2–34Google Scholar
  86. Upson T, Andrews S (2004) The genus Lavandula. Royal Botanic Gardens, KewGoogle Scholar
  87. Urwin NAR, Mailer RJ (2008) Oil content and fatty acid profiles of seed oil from the genus Lavandula. J Am Oil Chem Soc 85:491–492CrossRefGoogle Scholar
  88. Varona S, Kareth S, Martín A, Cocero MJ (2010) Formulation of lavandin essential oil with biopolymers by PGSS for application as biocide in ecological agriculture. J Supercrit Fluids 54:369–377CrossRefGoogle Scholar
  89. Vivaldo G, Masi E, Taiti C, Caldarelli G, Mancuso S (2017) The network of plants volatile organic compounds. Sci Rep 7:11050PubMedPubMedCentralCrossRefGoogle Scholar
  90. Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700PubMedCrossRefGoogle Scholar
  91. Wang Q, Reddy VA, Panicker D, Mao HZ, Kumar N, Rajan C, Venkatesh PN, Chua NH, Sarojam R (2016) Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata). Plant Biotechnol J 14:1619–1632PubMedPubMedCentralCrossRefGoogle Scholar
  92. Woronuk G, Demissie Rheault M, Mahmoud S (2011) Biosynthesis and therapeutic properties of Lavandula essential oil constituents. Planta Med 77:7–15PubMedCrossRefPubMedCentralGoogle Scholar
  93. Zebec Z, Wilkes J, Jervis AJ, Scrutton NS, Takano E, Breitling R (2016) Towards synthesis of monoterpenes and derivatives using synthetic biology. Curr Opin Chem Biol 34:37–43PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan Segura
    • 1
    • 2
  • Jesús Muñoz-Bertomeu
    • 1
  • Isabel Mendoza-Poudereux
    • 1
    • 2
  • Isabel Arrillaga
    • 1
    • 2
    Email author
  1. 1.Departamento de Biología VegetalUniversidad de ValenciaBurjassotSpain
  2. 2.ISIC/ERI de Biotecnología y BiomedicinaUniversidad de ValenciaBurjassotSpain

Personalised recommendations