Advertisement

Enzyme Immobilization on Chitin and Chitosan-Based Supports for Biotechnological Applications

  • Madan L. Verma
  • Sandeep Kumar
  • Anamika Das
  • Jatinder S. Randhawa
  • Munusamy Chamundeeswari
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 35)

Abstract

Actual industrial enzymes have often high cost and instability. Such issues have restricted commercial application of such fragile biomolecules. Alternatively, immobilization of enzymes on suitable supports improves stability, cost-effectiveness and recyclability. Chitin and chitosan are ideal supporting material because they are biocompatible, biodegradable, plenty of reactive functional groups, non-toxic and cheap. Different derivatives of chitin support such as chitosan, chitosan film, chitosan nanoparticle, and chitosan nanocomposite has been used for enzyme immobilization. Chitosan-bound biomolecules display considerably improved biocatalytic potential as compared to native biomolecules. Chitosan immobilized enzymes have exceptionally high operational stability and reusability, and thus are suitable for industrial processing. This chapter reviews enzymes immobilized on chitin- and chitosan-based biomaterials, and applications to drug delivery and sustainable agriculture.

Keywords

Enzymes Immobilization Stability Reusability Drug delivery Sustainable agriculture 

References

  1. Abd-Elhakeem MA, Elsayed AM, Alkhulaqi TA (2014) Activity and stability of immobilized Candida rugosa lipase on chitosan coated Fe3O4 nanoparticles in aqueous and organic media. J Adv Chem 10:2478 83.  https://doi.org/10.24297/jac.v10i3.6652 CrossRefGoogle Scholar
  2. Abdel-Naby MA, Ismail AMS, Ahmed SA, Abdel-Fattah AF (1998) Production and immobilization of alkaline protease from Bacillus mycoides. Bioresour Technol 64:205–210.  https://doi.org/10.1016/S0960-8524(97)00160-0 CrossRefGoogle Scholar
  3. Adriano WS, Silva JA, Giordano RLC, Gonçalves LRB (2005) Stabilization of penicillin G acylase by immobilization on glutaraldehyde-activated chitosan. Braz J Chem Eng 22:529–538.  https://doi.org/10.1590/S0104-66322005000400005 CrossRefGoogle Scholar
  4. Agarwal R, Gupta MN (1995) Evaluation of gluteraldehyde-modified chitosan as a matrix for hydrophobic interaction chromatography. Anal Chim Acta 313:253–257.  https://doi.org/10.1016/00032670(95)00241-Q CrossRefGoogle Scholar
  5. Alneyadi AH, Shah I, AbuQamar SF, Ashraf SS (2017) Differential degradation and detoxification of an aromatic pollutant by two different peroxidases. Biomol Ther 7:31.  https://doi.org/10.3390/biom7010031 CrossRefGoogle Scholar
  6. Altun GD, Cetinus SA (2007) Immobilization of pepsin on chitosan beads. Food Chem 100:964–971.  https://doi.org/10.1016/j.foodchem.2005.11.005 CrossRefGoogle Scholar
  7. Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230.  https://doi.org/10.2174/187231309788166415 CrossRefGoogle Scholar
  8. Arroyo M, De la Mata I, Acebal C, Pilar Castillon M (2003) Biotechnological applications of penicillin acylases: state of the art. Appl Microbiol Biotechnol 60:507–514.  https://doi.org/10.1007/s00253-002-1113-6 CrossRefPubMedGoogle Scholar
  9. Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF (2004) Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mat Res Part B: Appl Biomat 69B:216–222.  https://doi.org/10.1002/jbm.b.30000 CrossRefGoogle Scholar
  10. Bautista LF, Morales G, Sanz R (2015) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15. Chemosphere 136:273–280.  https://doi.org/10.1016/j.chemosphere.2015.05.071 CrossRefPubMedGoogle Scholar
  11. Benavidez TSE, Capra RH, Alvarez CI, Baruzzi AM (2009) Amperometric biosensor based on immobilization of oxalate oxidase in a mucin/chitosan matrix. Electroanalysis 21:837–843.  https://doi.org/10.1002/elan.200804482 CrossRefGoogle Scholar
  12. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184.  https://doi.org/10.1016/j.biomaterials.2005.03.027 CrossRefGoogle Scholar
  13. Bianchi D, Golini R, Bortolo R, Cesti P (1996) Immobilization of penicillin G acylase on aminoalkylated polyacrylic supports. Enzym Microb Technol 18:592–596.  https://doi.org/10.1016/0141-0229(95)00149-2 CrossRefGoogle Scholar
  14. Bilal M, Asgher M, Iqbal M, Hu H, Zhang X (2016) Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int J Biol Macromol 89:181–189.  https://doi.org/10.1016/j.ijbiomac.2016.04.075 CrossRefPubMedGoogle Scholar
  15. Biro E, Nemeth AS, Sisak C, Feczko T, Gyenis J (2008) Preparation of chitosan particles suitable for enzyme immobilization. J Biochem Biophys Methods 70:1240–1246.  https://doi.org/10.1016/j.jprot.2007.11.005 CrossRefPubMedGoogle Scholar
  16. Biswanath B, Bikram B, Apurba D (2012) A review on production of serine alkaline protease by Bacillus spp. J Biochem Technol 3:448–457. https://www.jbiochemtech.com/index.php/jbt/article/view/282 Google Scholar
  17. Borchard G (2001) Chitosans for gene delivery. Adv Drug Del Rev 52:145–150. https://www.ncbi.nlm.nih.gov/pubmed/11718938 CrossRefGoogle Scholar
  18. Bosiger P, Tegl G, Richard IMT, Le Gat L, Huber L, Stagl V, Mensah A, Guebitz GM, Rossi RM, Fortunato G (2018) Enzyme functionalized electrospun chitosan mats for antimicrobial treatment. Carbohydr Polym 181:551–559.  https://doi.org/10.1016/j.carbpol.2017.12.002 CrossRefPubMedGoogle Scholar
  19. Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases and their applications in baking industry. Food Tech Biotechnol 46:22–31. https://hrcak.srce.hr/file/34864 Google Scholar
  20. Cao NJ, Xia YK, Gong CS, Tsao GT (1997) Production of 2,3-butanediol from pretreated corn cob by klebsiella oxytoca in the presence of fungal cellulase. Appl Biochem Biotechnol 63:129–139.  https://doi.org/10.1007/BF02920419 CrossRefPubMedGoogle Scholar
  21. Cao L, Van LM, Langen F, Van R, Sheldon RA (2001) Cross-linked aggregates of penicillin acylase: robust catalysts for the synthesis of β-lactam antibiotics. J Mol Catal B Enzym 11:665–670.  https://doi.org/10.1016/S1381-1177(00)00078-3 CrossRefGoogle Scholar
  22. Cao L, Van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394.  https://doi.org/10.1016/S0958-1669(03)00096-X CrossRefPubMedGoogle Scholar
  23. Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed 39:2226–2254. PMID: 10941056CrossRefGoogle Scholar
  24. Chen JP, Yang PC, Ma YH, Wu T (2011) Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydr Polym 84:364–372.  https://doi.org/10.1016/j.carbpol.2010.11.052 CrossRefGoogle Scholar
  25. Chen J, Liu C, Shan W, Xiao Z, Guo H, Huang Y (2015) Enhanced stability of oral insulin in targeted peptide ligand trimethyl chitosan nanoparticles against trypsin. J Microencapsul 32:632–641.  https://doi.org/10.3109/02652048.2015.1065920 CrossRefPubMedGoogle Scholar
  26. Dalal S, Kapoor M, Gupta MN (2007) Preparation and characterization of combi-CLEAs catalyzing multiple non-cascade reactions. J Mol Catal B Enzym 44:128–132.  https://doi.org/10.1016/j.molcatb.2006.10.003 CrossRefGoogle Scholar
  27. Darias R, Villalonga R (2001) Functional stabilization of cellulase by covalent modification with chitosan. J Chem Technol Biotechnol 76:489–493.  https://doi.org/10.1002/jctb.386 CrossRefGoogle Scholar
  28. Darwish MSA, Nguyen NHA, Ševců A, Stibor I (2015) Functionalized magnetic nanoparticles and their effect on Escherichia coli and Staphylococcus aureus. J Nanomaterials 2015:1–10.  https://doi.org/10.1155/2015/416012 CrossRefGoogle Scholar
  29. Das A, Singh J, Yogalakshmi KN (2017) Laccase immobilized magnetic iron nanoparticles: fabrication and its performance evaluation in chlorpyrifos degradation. Int Biodeter Biodegr 117:183–189.  https://doi.org/10.1016/j.ibiod.2017.01.007 CrossRefGoogle Scholar
  30. Dhanaraj SA, Muralidharan S, Venugopal V, Kanniappan P, Tan W, Hui S, Qi LL (2016) Formulation and evaluation of chitosan nanospheres containing methotrexate targeted drug delivery system. J Young Pharm 8(4):330–334.  https://doi.org/10.5530/jyp.2016.4.7 CrossRefGoogle Scholar
  31. Díaz-Hernández A, Gracida J, García-Almendárez BE, Regalado C, Núñez R, Amaro-Reyes A (2018) Characterization of magnetic nanoparticles coated with chitosan: a potential approach for enzyme immobilization. J Nanomat 2018:1–11.  https://doi.org/10.1155/2018/9468574 CrossRefGoogle Scholar
  32. Dicosimo R, Mcauliffe J, Pouloseb AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474.  https://doi.org/10.1039/C3CS35506C CrossRefPubMedGoogle Scholar
  33. Dinçer A, Telefoncu A (2012) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym 45:10–14.  https://doi.org/10.1016/j.molcatb.2006.10.005 CrossRefGoogle Scholar
  34. Dinçer A, Becerik S, Aydemir T (2012) Immobilization of tyrosinase on chitosan–clay composite beads. Int J Biol Macromol 50:815–820.  https://doi.org/10.1016/j.ijbiomac.2011.11.020 CrossRefPubMedGoogle Scholar
  35. Domínguez A, Gomez J, Lorenzo M, Sanromán Á (2007) Enhanced production of laccase activity by Trametes versicolor immobilized into alginate beads by the addition of different inducers. World J Microbiol Biotechnol 23:367–373.  https://doi.org/10.1007/s11274-006-9233-2 CrossRefGoogle Scholar
  36. Dutta PK (2016) Chitin and chitosan for regenerative medicine. Springer, New Delhi.  https://doi.org/10.1007/978-81-322-2511-9 CrossRefGoogle Scholar
  37. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Indus Res 63:20–31. http://nopr.niscair.res.in/handle/123456789/5397 Google Scholar
  38. Edwards W, Leukes WD, Rose PD, Burton SG (1999) Immobilization of polyphenol oxidase on chitosan-coated polysulphone capillary membranes for improved phenolic effluent bioremediation. Enzym Microb Technol 25:769–773.  https://doi.org/10.1016/S0141-0229(99)00116-7 CrossRefGoogle Scholar
  39. Elchinger PH, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Michaud P (2015) Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Int J Biol Macromol 72:1063–1068.  https://doi.org/10.1016/j.ijbiomac.2014.09.061 CrossRefPubMedGoogle Scholar
  40. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23:619–629.  https://doi.org/10.1016/j.jfda.2014.10.008 CrossRefPubMedGoogle Scholar
  41. Fan G, Xu Y, Zhang X, Lei S, Yang S, Pan S (2011) Characteristics of immobilised β-glucosidase and its effect on bound volatile compounds in orange juice. Int J Food Sci Technol 46:2312–2320.  https://doi.org/10.1111/j.1365-2621.2011.02751.x CrossRefGoogle Scholar
  42. Fang H, Huang J, Ding L, Li M, Chen Z (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol Mater Sci Ed 24:42–47.  https://doi.org/10.1007/s11595009-1042-7 CrossRefGoogle Scholar
  43. Future Market Insights (2017) Chitin market: global industry analysis (2012–2016) and opportunity assessment (2017–2027). http://www.futuremarketinsights.com. Accessed on 16 Dec 2018
  44. Gades MD, Stern JS (2005) Chitosan supplementation and fat absorption in men and women. J Am Dietetic Assoc 105:72–77.  https://doi.org/10.1016/j.jada.2004.10.004 CrossRefGoogle Scholar
  45. Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904.  https://doi.org/10.1002/adsc.201100534 CrossRefGoogle Scholar
  46. Gavini E, Rassu G, Muzzarelli C, Cossu M, Giunchedi P (2008) Spray-dried microspheres based on methylpyrrolidinone chitosan as new carrier for nasal administration of metoclopramide. Eur J Pharm Biopharm 68:245–252.  https://doi.org/10.1016/j.ejpb.2007.05.002 CrossRefPubMedGoogle Scholar
  47. Ghaffarian R, Perez-Herrero E, Oh H, Raghavan SR, Muro S (2016) Chitosan-alginate microcapsules provide gastric protection and intestinal release of ICAM-1-targeting nanocarriers, enabling gi targeting in vivo. Adv Funct Mater 26:3382–3393.  https://doi.org/10.1002/adfm.201600084 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109.  https://doi.org/10.1016/j.progpolymsci.2004.12.001 CrossRefGoogle Scholar
  49. Hein S, Wang K, Stevens WF, Kjems J (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mat Sci Tech 24:1053–1061.  https://doi.org/10.1179/174328408X341744 CrossRefGoogle Scholar
  50. Homaei A (2015) Enzyme immobilization and its application in the food industry. In: Rai R (ed) Advances in food biotechnology. Wiley, Hoboken, NJ, pp 145–164.  https://doi.org/10.1002/9781118864463.ch09 CrossRefGoogle Scholar
  51. Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205.  https://doi.org/10.1007/s12154-013-0102-9 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Howling GI, Dettmar PW, Goddard PA, Hampson FC, Dornish M, Wood EJ (2001) The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 22:2959–2966.  https://doi.org/10.1016/S0142-9612(01)00042-4 CrossRefPubMedGoogle Scholar
  53. Hsieh HJ, Liu PC, Liao WJ (2000) Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol Lett 22:1459–1464.  https://doi.org/10.1023/A:1005602812037 CrossRefGoogle Scholar
  54. Husain Q, Ulber R (2011) Immobilized peroxidase as a valuable tool in the remediation of aromatic pollutants and xenobiotic compounds: a review. Crit Rev Environ Sci Technol 41:770–804.  https://doi.org/10.1080/10643380903299491 CrossRefGoogle Scholar
  55. Illanes A, Ruiz A, Zuniga ME, Aguirre C, O’reilly S, Curotto E (1990) Immobilization of lactase for the continuous hydrolysis of whey permeate. Bioprocess Eng 5:257–262.  https://doi.org/10.1007/BF00369375 CrossRefGoogle Scholar
  56. Janaun J, Ellis N (2010) Perspectives on biodiesel as a sustainable fuel. Renew Sust Energ Rev 14:1312–1320.  https://doi.org/10.1016/j.rser.2009.12.011 CrossRefGoogle Scholar
  57. Jiang DS, Long SY, Huang J, Xiao HY, Zhou JY (2005) Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem Eng J 25:15–23.  https://doi.org/10.1016/j.bej.2005.03.007 CrossRefGoogle Scholar
  58. Kanatt SR, Chander R, Sharma A, Ramesh C, Arun S (2008) Chitosan glucose complex – a novel food preservatives. Food Chem 106:521–528.  https://doi.org/10.1016/j.foodchem.2007.06.036 CrossRefGoogle Scholar
  59. Kanwar SS, Verma ML (2010) Lipases. In: Encyclopedia of industrial biotechnology. Wiley Publishers, USA, pp 1–16.  https://doi.org/10.1002/9780470054581.eib387 CrossRefGoogle Scholar
  60. Kanwar SS, Kaushal RK, Verma ML, Kumar Y, Chauhan GS, Gupta R, Chimni SS (2005) Synthesis of ethyl laurate by hydrogel immobilized lipase of Bacillus coagulans MTCC-6375. Indian J Microbiol 45:187–193. http://dro.deakin.edu.au/view/DU:30047962 Google Scholar
  61. Kanwar SS, Verma HK, Pathak S, Kaushal RK, Kumar Y, Verma ML, Chimni SS, Chauhan GS (2006) Enhancement of ethyl propionate synthesis by poly (AAc-co-HPMA-cl-MBAm)-immobilized Pseudomonas aeruginosa MTCC-4713 exposed to Hg2+, and NH4 + ions. Acta Microbiol Immunol Hung 53:195–207.  https://doi.org/10.1556/AMicr.53.2006.2.6 CrossRefPubMedGoogle Scholar
  62. Kanwar SS, Verma ML, Maheshwari C, Chauhan S, Chimni SS, Chauhan GS (2007a) Properties of poly (AAc-co-HPMA-cl-EGDMA) hydrogel-bound lipase of Pseudomonas aeruginosa MTCC-4713 and its use in synthesis of methyl acrylate. J Appl Polym Sci 104:183–191.  https://doi.org/10.1002/app.25315 CrossRefGoogle Scholar
  63. Kanwar SS, Kaushal RK, Verma ML, Kumar Y, Azmi W, Gupta R, Chimni SS, Chauhan GS (2007b) Synthesis of ethyl oleate employing synthetic hydrogel-immobilized lipase of Bacillus coagulans MTCC-6375. Ind J Biotechnol 6:68–73. http://hdl.handle.net/123456789/3015 Google Scholar
  64. Kanwar SS, Gehlot S, Verma ML, Gupta R, Kumar Y, Chauhan GS (2008) Synthesis of geranyl butyrate employing poly (AAc-co-HPMA-cl-EGDMA) hydrogel-immobilized lipase of Pseudomonas aeruginosa MTCC-4713. J Appl Polym Sci 110:2681–2692.  https://doi.org/10.1002/app.28241 CrossRefGoogle Scholar
  65. Kara F, Demirel G, Tumturk H (2006) Immobilization of urease by using chitosan-alginate and poly (acrylamide-co-acrylic acid)/kappa-carrageenan supports. Bioprocess Biosyst Eng 29:207–211.  https://doi.org/10.1007/s00449-006-0073-0 CrossRefPubMedGoogle Scholar
  66. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:1–11.  https://doi.org/10.4061/2011/805187 CrossRefGoogle Scholar
  67. Kariminia S, Shamsipur A, Shamsipur M (2016) Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J Pharm Biomed Anal 129:450–457.  https://doi.org/10.1016/j.jpba.2016.07.016 CrossRefPubMedGoogle Scholar
  68. Kevadiya BD, Rajkumar S, Bajaj HC (2015) Application and evaluation of layered silicate-chitosan composites for site specific delivery of diclofenac. Biocybern Biomed Eng 35:120–127.  https://doi.org/10.1016/j.bbe.2014.08.004 CrossRefGoogle Scholar
  69. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349.  https://doi.org/10.1016/S0142-9612(03)00026-7 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kiba N, Oyama Y, Furusawa M (1993) Determination of aliphatic amino acids in serum by HPLC with fluorimetric detection using co-immobilized enzyme reactor. Talanta 40:657–660.  https://doi.org/10.1016/0039-9140(93)80274-U CrossRefPubMedGoogle Scholar
  71. Kjeang E, Sinton D, Harrington DA (2006) Strategic enzyme patterning for microfluidic biofuel cells. J Power Sources 158:1–12.  https://doi.org/10.1016/j.jpowsour.2005.07.092 CrossRefGoogle Scholar
  72. Kluchova K, Zboril R, Tucek J, Pecova M, Zajoncova L, Safarik I, Mashlan M, Markova I, Jancik D, Sebela M, Bartonkova H, Bellesi V, Novak P, Petridis D (2009) Superparamagnetic maghemite nanoparticles from solid-state synthesis: their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 30:2855–2863.  https://doi.org/10.1016/j.biomaterials.2009.02.023 CrossRefPubMedGoogle Scholar
  73. Konno AI, Gauthier JH, Matahira Y (2002) Chitin oligosaccharides and/or chitosan oligosaccharides for preventing or treating common cold or treating pain. Google Patents. https://patents.google.com/patent/US20020022601 Google Scholar
  74. Kotwal SM, Shankar V (2009) Immobilized invertase. Biotechnol Adv 27:311–322.  https://doi.org/10.1016/j.biotechadv.2009.01.009 CrossRefPubMedGoogle Scholar
  75. Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35:126–139.  https://doi.org/10.1016/j.enzmictec.2003.12.013 CrossRefGoogle Scholar
  76. Krukemeyer MG, Krenn V, Jakobs M, Wagner W (2012) Magnetic drug targeting in a rhabdomyosarcoma rat model using magnetite-dextran composite nanoparticle-bound mitoxantrone and 0.6 tesla extracorporeal magnets – sarcoma treatment in progress. J Drug Target 20:185–193.  https://doi.org/10.3109/1061186X.2011.622399 CrossRefPubMedGoogle Scholar
  77. Kumar S (2014) Immobilization of enzyme serratiopeptidase on magnetic nanoparticles and characterization of resulted nanoparticles. In: Department of Biotechnology, Vol. PhD, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar India. https://scholar.google.co.in/citations?user=7fcP5bgAAAAJ&hl=en
  78. Kumar S, Dwevedi A, Kayastha AM (2009) Immobilization of soybean (glycine max) urease on alginate and chitosan beads showing improved stability: analytical applications. J Mol Catal B Enzym 58:138–145.  https://doi.org/10.1016/j.molcatb.2008.12.006 CrossRefGoogle Scholar
  79. Kumar S, Jana AK, Dhamija I, Singla Y, Maiti M (2013) Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. Eur J Pharm Biopharm 85:413–426.  https://doi.org/10.1016/j.ejpb.2013.06.019 CrossRefPubMedGoogle Scholar
  80. Kumar S, Jana A, Maiti M, Dhamija I (2014a) Carbodiimide-mediated immobilization of serratiopeptidase on amino-, carboxyl-functionalized magnetic nanoparticles and characterization for target delivery. J Nano Res 16:1–23.  https://doi.org/10.1007/s11051-013-2233-x CrossRefGoogle Scholar
  81. Kumar S, Jana AK, Dhamija I, Maiti M (2014b) Chitosan-assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its target delivery. J Drug Target 22:123–137.  https://doi.org/10.3109/1061186X.2013.844157 CrossRefPubMedGoogle Scholar
  82. Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971.  https://doi.org/10.1016/S0079-6700(01)00007-7 CrossRefGoogle Scholar
  83. Lakkakula JR, Matshaya T, Krause RWM (2017) Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Materials Sci Eng C 70:169–177.  https://doi.org/10.1016/j.msec.2016.08.073 CrossRefGoogle Scholar
  84. Lalov IG, Guerginov II, Krysteva MA, Fartsov K (2000) Treatment of waste water from distilleries with chitosan. Water Res 34:1503–1506.  https://doi.org/10.1016/S0043-1354(99)00291-2 CrossRefGoogle Scholar
  85. Lee CA, Tsai YC (2009) Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sens Actuators B Chem 138:518–523.  https://doi.org/10.1016/j.snb.2009.01.001 CrossRefGoogle Scholar
  86. Lee KH, Lee PM, Siaw YS (1992) Studies of phenyl-alanine production by immobilized aminoacylase in stabilized calcium alginate beads. J Chem Technol Biotechnol 54:375–382.  https://doi.org/10.1002/jctb.280540411 CrossRefGoogle Scholar
  87. Lei Z, Bi S (2007) The silica-coated chitosan particle from a layer-by-layer approach for pectinase immobilization. Enzym Microb Technol 40:1442–1447.  https://doi.org/10.1016/j.enzmictec.2006.10.027 CrossRefGoogle Scholar
  88. Leipzig ND, Wylie RG, Kim H, Shoichet MS (2011) Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32:57–64.  https://doi.org/10.1016/j.biomaterials.2010.09.031 CrossRefPubMedGoogle Scholar
  89. Li M, Su E, You P, Gong X, Sun M, Xu D, Wei D (2010) Purification and in situ immobilization of papain with aqueous two-phase system. PLoS One 5:e15168.  https://doi.org/10.1371/journal.pone.0015168 CrossRefGoogle Scholar
  90. Liu J, Yuan X, Zeng G, Shi J, Chen S (2006) Effect of biosurfactant on cellulase and xylanase production by Tricoderma viride in solid substrate fermentation. Process Biochem 41:2347–2351.  https://doi.org/10.1016/j.procbio.2006.05.014 CrossRefGoogle Scholar
  91. Lopez A, Lazaro N, Marques AM (1997) The interphase technique: a simple method of cell immobilization in gel-beads. J Microbiol Methods 30:231–234.  https://doi.org/10.1016/S0167-7012(97)00071-7 CrossRefGoogle Scholar
  92. Mahdavinia GR, Etemadi H, Soleymani F (2015) Magnetic/pH-responsive beads based on caboxymethyl chitosan and k-carrageenan and controlled drug release. Carbohydr Polym 128:112–121.  https://doi.org/10.1016/j.carbpol.2015.04.022 CrossRefPubMedGoogle Scholar
  93. Malmiri HJ, Jahanian MAG, Berenjian A (2012) Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am J Biochem Biotech 8:203–219.  https://doi.org/10.3844/ajbbsp.2012.203.219 CrossRefGoogle Scholar
  94. Miao Y, Chia LS, Goh NK, Tan SN (2001) Amperometric glucose biosensor based on immobilization of glucose oxidase in chitosan matrix cross-linked with glutaraldehyde. Electroanalysis 13:347–349.  https://doi.org/10.1002/1521-4109(200103)13:4<347::AID-ELAN347>3.0.CO;2-Z CrossRefGoogle Scholar
  95. Milani MM, Lotfi AS, Mohsenifar A, Mikaili P, Kamelipour N, Dehghan J (2015) Enhancing organophosphorus hydrolase stability by immobilization on chitosan beads containing glutaraldehyde. Res J Environ Toxicol 9:34–44.  https://doi.org/10.3923/rjet.2015.34.44 CrossRefGoogle Scholar
  96. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotech Eq 29:205–220.  https://doi.org/10.1080/13102818.2015.1008192 CrossRefGoogle Scholar
  97. Monier M, Ayad DM, Weia Y, Sarhanb AA (2010) Immobilization of horseradish peroxidase on modified chitosan beads. Int J Biol Macromol 46:324–330.  https://doi.org/10.1016/j.ijbiomac.2009.12.018 CrossRefPubMedGoogle Scholar
  98. Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP (2015) pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol 72:640–648.  https://doi.org/10.1016/j.ijbiomac.2014.08.040 CrossRefPubMedGoogle Scholar
  99. Muzzarelli RAA (1996) Chitosan-based dietary foods. Carbohydr Polym 29:309–316.  https://doi.org/10.1016/S0144-8617(96)00033-1 CrossRefGoogle Scholar
  100. Muzzarelli RA, Barontini G, Rocchetti R (1976) Immobilized enzymes on chitosan columns: α-chymotrypsin and acid phosphatase. Biotechnol Bioeng 18:1445–1454.  https://doi.org/10.1002/bit.260181011 CrossRefPubMedGoogle Scholar
  101. Nisha S, Arun Karthick S, Gobi N (2012) A review on methods, application and properties of immobilized enzyme. Chem Sci Rev Lett 1:148–155. http://www.academia.edu/9618593/ Google Scholar
  102. Njokweni AP, Rose SH, Van Zyi WH (2012) Fungal β-glucosidase expression in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 39:1445–1452.  https://doi.org/10.1007/s10295-012-1150-9 CrossRefPubMedGoogle Scholar
  103. Noda T, Furuta S, Suda I (2001) Sweet potato α-amylase immobilized on chitosan beads and its application in the semi-continuous production of maltose. Carbohydr Polym 44:189–195.  https://doi.org/10.1016/S0144-8617(00)00226-5 CrossRefGoogle Scholar
  104. Ohshima Y, Nishino K, Yonekura Y, Kishimoto S, Wakabayashi S (1987) Clinical application of chitin non-woven fabric as wound dressing. Euro J Plastic Sur 10:66–69.  https://doi.org/10.1007/BF00578375 CrossRefGoogle Scholar
  105. Okamoto Y, Kawakami K, Miyatake K, Morimoto M, Shigemasa Y, Minami S (2002) Analgesic effects of chitin and chitosan. Carbohydr Polym 49:249–252.  https://doi.org/10.1016/S0144-8617(01)00316-2 CrossRefGoogle Scholar
  106. Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S (2003) Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 53:337–342.  https://doi.org/10.1016/S0144-8617(03)00076-6 CrossRefGoogle Scholar
  107. Palmeri R, Spagna G (2007) β-Glucosidase in cellular and acellular form for winemaking application. Enzyme Microb Technol 40:382–389.  https://doi.org/10.1016/j.enzmictec.2006.07.007 CrossRefGoogle Scholar
  108. Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production. Crit Rev Biotechnol 31:20–31.  https://doi.org/10.3109/07388551003757816 CrossRefPubMedGoogle Scholar
  109. Peinado PA, Moreno JJ, Villaba JM, Gonzalez-Reyes JA, Ortega JM, Mauricio JC (2006) Yeast biocapsules: a new immobilization method and their applications. Enzyme Microb Technol 40:79–84.  https://doi.org/10.1016/j.enzmictec.2005.10.040 CrossRefGoogle Scholar
  110. Pereira EB, Castro HFD, Moraes FFD, Zanin GM (2001) Kinetic studies of lipase from Candida rugosa. Appl Biochem Biotechnol 91:739–752.  https://doi.org/10.1385/ABAB:91-93:1-9:739 CrossRefPubMedGoogle Scholar
  111. Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57.  https://doi.org/10.1080/10717540590889781 CrossRefPubMedGoogle Scholar
  112. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700.  https://doi.org/10.1016/j.carres.2004.09.007 CrossRefGoogle Scholar
  113. Qian TT, Yang RJ, Hua X (2011) Immobilization of lactase on modified magnetic chitosan microspheres. Food Mach 27:7–10.  https://doi.org/10.2991/icmia-16.2016.161 CrossRefGoogle Scholar
  114. Qin Y, Chen J, Bi Y, Xu X, Zhou H, Gao J, Hu Y, Zhao Y, Chai Z (2015) Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomater 17:201–209.  https://doi.org/10.1016/j.actbio.2015.01.026 CrossRefPubMedGoogle Scholar
  115. Qu Y, Zhu M, Liu K, Bao X, Lin J (2006) Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol J 1:1235–1240.  https://doi.org/10.1002/biot.200600067 CrossRefGoogle Scholar
  116. Ramakrishnan V, Lathika KM, D’Souza SJ, Singh BB, Raghavan KG (1997) Investigation with chitosan-oxalate oxidase-catalase conjugate for degrading oxalate from hyperoxaluric rat chyme. Indian J Biochem Biophys 34:373–378. https://www.ncbi.nlm.nih.gov/pubmed/9491647 PubMedGoogle Scholar
  117. Rekha CR, Vijayalakshmi G (2010) Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin b complex in fermented soymilk by probiotic bacteria and yeast. J Appl Microbiol 109:1198–1208.  https://doi.org/10.1111/j.1365-2672.2010.04745.x CrossRefPubMedGoogle Scholar
  118. Rezakhani N, Parivar K, Khayati M, Etemadzade S (2015) Immobilization of protease in biopolymers (mixture of alginate-chitosan). J Para Sci 5:108–113.  https://doi.org/10.22037/jps.v5i4.7858 CrossRefGoogle Scholar
  119. Ribeiro LNM, Alcantara ACS, Darder M, Aranda P, Araujo-Moreira FM, Ruiz-Hitzky E (2014) Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int J Pharm 463:1–9.  https://doi.org/10.1016/j.ijpharm.2013.12.035 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632.  https://doi.org/10.1016/j.progpolymsci.2006.06.001 CrossRefGoogle Scholar
  121. Romo-Sánchez S, Camacho C, Ramirez HL, Arévalo Villena M (2014) Immobilization of commercial cellulase and xylanase by different methods using two polymeric supports. Adv Biosci Biotechnol 5:517–526.  https://doi.org/10.4236/abb.2014.56062 CrossRefGoogle Scholar
  122. Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387–391.  https://doi.org/10.1038/7385 CrossRefPubMedGoogle Scholar
  123. Saneja A, Dubey RD, Alam N, Khare V, Gupta PN (2014) Co-formulation of P-glycoprotein substrate and inhibitor in nanocarriers: an emerging strategy for cancer chemotherapy. Curr Cancer Drug Targets 14:419–433. https://www.ncbi.nlm.nih.gov/pubmed/24720364 CrossRefGoogle Scholar
  124. Shao J, Ge H, Yang Y (2007) Immobilization of polyphenol oxidase on chitosan–SiO2 gel for removal of aqueous phenol. Biotechnol Lett 29:901–905.  https://doi.org/10.1007/s10529-007-9329-2 CrossRefPubMedGoogle Scholar
  125. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307.  https://doi.org/10.1002/adsc.200700082 CrossRefGoogle Scholar
  126. Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477.  https://doi.org/10.1007/s00253-011-3554-2 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Sheldon RA, van pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235.  https://doi.org/10.1039/c3cs60075k CrossRefPubMedGoogle Scholar
  128. Sheldon RA, Sorgedrager M, Janssen MH (2007) Use of cross-linked enzyme aggregates (CLEAs) for performing biotransformations. Chim Oggi 25:62–67.  https://doi.org/10.1042/BST0351583 CrossRefGoogle Scholar
  129. Shen X, Xia L (2006) Lactic acid production from cellulosic material by synergistic hydrolysis and fermentation. Appl Biochem Biotechnol 133:252–262. PMID:16720905CrossRefGoogle Scholar
  130. Shewale JG (1982) β-Glucosidase: its role in cellulase synthesis and hydrolysis of cellulose. Int J Biochem Cell 14:435–443.  https://doi.org/10.1016/0020-711X(82)90109-4 CrossRefGoogle Scholar
  131. Shi LE, Tang ZX, Yi Y, Chen JS, Xiong WY (2011) Immobilization of nuclease p1 on chitosan micro-spheres. Chem Biochem Eng Q 25:83–88. https://hrcak.srce.hr/66143 Google Scholar
  132. Silva DF, Rosa H, Carvalho AFA, Oliva-Neto P (2015) Immobilization of papain on chitin and chitosan and recycling of soluble enzyme for deflocculation of Saccharomyces cerevisiae from bioethanol distilleries. Enzyme Res 2015:1–10.  https://doi.org/10.1155/2015/573721 CrossRefGoogle Scholar
  133. Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174.  https://doi.org/10.1007/s13205-016-0485-8 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Sofia P, Asgher M, Shahid M, Randhawa MA (2016) Chitosan beads immobilized Schizophyllum commune ibl-06 lignin peroxidase with novel thermo stability, catalytic and dye removal properties. J Anim Plant Sci 26:1451–1463. http://www.thejaps.org.pk/docs/v-26-05/36 Google Scholar
  135. Soni S, Desai JD, Devi S (2001) Immobilization of yeast alcohol dehydrogenase by entrapment and covalent binding to polymeric supports. J Appl Polym Sci 82:1299–1305.  https://doi.org/10.1002/app.1964 CrossRefGoogle Scholar
  136. Spahn C, Minteer SD (2008) Enzyme immobilization in biotechnology. Recent Pat Eng 2:195–200.  https://doi.org/10.2174/187221208786306333 CrossRefGoogle Scholar
  137. Stossel P, Leuba JL (1984) Effect of chitosan, chitin and some aminosugars on growth of various soilborne phytopathogenic fungi. J Phytopathol 111:82–90.  https://doi.org/10.1111/j.1439-0434.1984.tb04244.x CrossRefGoogle Scholar
  138. Su E, Xia T, Gao L, Dai Q, Zhang Z (2010) Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food Bioprod Proc 88:83–89.  https://doi.org/10.1016/j.fbp.2009.04.001 CrossRefGoogle Scholar
  139. Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598.  https://doi.org/10.1016/S0142-9612(00)00126-5 CrossRefPubMedGoogle Scholar
  140. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11.  https://doi.org/10.1016/S0960-8524(01)00212-7 CrossRefPubMedGoogle Scholar
  141. Taniai T, Sukuragawa A, Okutani T (2001) Fluorometric determination of ethanol in liquor samples by flow-injection analysis using an immobilized enzyme-reactor column with packing prepared by coupling alcohol oxidase and peroxidase onto chitosan beads. J AOAC Int 84:1475–1483. https://www.ncbi.nlm.nih.gov/pubmed/11601467 PubMedGoogle Scholar
  142. Tripathi P, Kumari A, Rath P, Kayastha AM (2007) Immobilization of α-amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads. J Mol Catal B Enzym 49:69–74.  https://doi.org/10.1016/j.molcatb.2007.08.011 CrossRefGoogle Scholar
  143. Tsai GUO, Su WH, Chen HC, Pan CL (2002) Antimicrobial activity of shrimp chitin and chitosan from different treatments. Fish Sci 68:170–177.  https://doi.org/10.1046/j.1444-2906.2002.00404.x CrossRefGoogle Scholar
  144. Tsai YC, Chen SY, Liaw HW (2007) Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sens Actuators B Chem 125:474–481.  https://doi.org/10.1016/j.snb.2007.02.052 CrossRefGoogle Scholar
  145. Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U (2014) Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250.  https://doi.org/10.1016/j.ejps.2014.05.021 CrossRefGoogle Scholar
  146. Valerio SG, Alves JS, Klein MP, Rodrigues RC, Hertz PF (2013) High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohydr Polym 92:462–468.  https://doi.org/10.1016/j.carbpol.2012.09.001 CrossRefPubMedGoogle Scholar
  147. Verma ML (2017a) Nanobiotechnology advances in enzymatic biosensors for the Agri-food industry. Environ Chem Lett 15:555–560.  https://doi.org/10.1007/s10311-017-0640-4 CrossRefGoogle Scholar
  148. Verma ML (2017b) Enzymatic nanobiosensors in the agricultural and food industry. In: Ranjan S, Dasgupta N, Lichfouse E (eds) Nanoscience in food and agriculture, vol 4. Springer, Cham.. Sustainable agriculture reviews, 24:229–245.  https://doi.org/10.1007/978-3-319-53112-0_7 CrossRefGoogle Scholar
  149. Verma ML (2017c) Fungus-mediated bioleaching of metallic nanoparticles from agro-industrial by-products. In: Prasad R (ed) Fungal nanotechnology. Springer, Cham, pp 89–102. Fungal Biol, 1–20.  https://doi.org/10.1007/978-3-319-68424-6_5 CrossRefGoogle Scholar
  150. Verma ML, Barrow CJ (2015) Recent advances in feedstocks and enzyme-immobilised technology for effective transesterification of lipids into biodiesel. In: Kalia V (ed) Microbial factories pp 87–103. Springer, New Delhi.  https://doi.org/10.1007/978-81-322-2598-0_6 CrossRefGoogle Scholar
  151. Verma ML, Kanwar SS (2008) Properties and application of Poly (MAc-2011co-DMA-cl-MBAm) hydrogel immobilized Bacillus cereus MTCC 8372 lipase for synthesis of geranyl acetate. J Appl Polym Sci 110:837–846.  https://doi.org/10.1002/app.28539 CrossRefGoogle Scholar
  152. Verma ML, Kanwar SS (2010) Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 57:187–201.  https://doi.org/10.1556/AMicr.57.2010.3.4 CrossRefGoogle Scholar
  153. Verma ML, Kanwar SS (2012) Harnessing the potential of thermophiles: the variants of extremophiles. Dynamic Biochem Process Biotechnol Mol Biol 6:28–39. http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/DBPBMB_6(SI1)/DBPBMB_6(SI1)28-39o.pdfGoogle Scholar
  154. Verma ML, Azmi W, Kanwar SS (2008a) Microbial lipases: at the interface of aqueous and non-aqueous media-a review. Acta Microbiol Immunol Hung 55:265–293.  https://doi.org/10.1556/AMicr.55.2008.3.1 CrossRefPubMedGoogle Scholar
  155. Verma ML, Chauhan GS, Kanwar SS (2008b) Enzymatic synthesis of isopropyl myristate using immobilized lipase from Bacillus cereus MTCC-8372. Acta Microbiol Immunol Hung 55:327–342.  https://doi.org/10.1556/AMicr.55.2008.3.4 CrossRefPubMedGoogle Scholar
  156. Verma ML, Azmi W, Kanwar SS (2009) Synthesis of ethyl acetate employing celite-immobilized lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 56:229–242.  https://doi.org/10.1556/AMicr.56.2009.3.3 CrossRefPubMedGoogle Scholar
  157. Verma ML, Azmi W, Kanwar SS (2011) Enzymatic synthesis of isopropyl acetate by immobilized Bacillus cereus lipase in organic medium. Enzyme Res 2011:7.  https://doi.org/10.4061/2011/919386 CrossRefGoogle Scholar
  158. Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of β-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437.  https://doi.org/10.1016/j.ijbiomac.2011.12.029 CrossRefPubMedGoogle Scholar
  159. Verma ML, Rajkhowa R, Barrow CJ, Wang X, Puri M (2013a) Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis. Bioresour Technol 145:302–306.  https://doi.org/10.1016/j.biortech.2013.01.065 CrossRefPubMedGoogle Scholar
  160. Verma ML, Naebe M, Barrow CJ, Puri M (2013b) Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One 8:e73642.  https://doi.org/10.1371/journal.pone.0073642. eCollection 2013CrossRefPubMedPubMedCentralGoogle Scholar
  161. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013c) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6.  https://doi.org/10.1016/j.biortech.2013.01.047 CrossRefPubMedGoogle Scholar
  162. Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36:108–119.  https://doi.org/10.3109/07388551.2014.928811 CrossRefPubMedGoogle Scholar
  163. Wang JG, Zhao LY, Liu X, Hou P (2012) Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl Microbiol Biotechnol 97:681–692.  https://doi.org/10.1007/s00253-012-3979-2 CrossRefPubMedGoogle Scholar
  164. Wei D, Qian W (2008) Facile synthesis of Ag and au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B Biointerf 62:136–142.  https://doi.org/10.1016/j.colsurfb.2007.09.030 CrossRefGoogle Scholar
  165. Xu J, Strandman S, Zhu JXX, Barralet J, Cerruti M (2015) Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials 37:395–404.  https://doi.org/10.1016/j.biomaterials.2014.10.024 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Yao D, Vlessidis AG, Evmiridis NP (2003) Microdialysis sampling and monitoring of uric acid in vivo by a chemiluminescence reaction and an enzyme on immobilized chitosan support membrane. Anal Chim Acta 478:23–30.  https://doi.org/10.1016/S0003-2670(02)01484-8 CrossRefGoogle Scholar
  167. Yhee JY, Song S, Lee SJ, Park SG, Kim K-S, Kim MG, Son S, Koo H, Kwon IC, Jeong JH (2015) Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. J Control Release 198:1–9.  https://doi.org/10.1016/j.jconrel.2014.11.019 CrossRefPubMedGoogle Scholar
  168. Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53:3448–3454.  https://doi.org/10.1021/ie404072s CrossRefGoogle Scholar
  169. Zhou Y, Wang L, Wu T, Tang X, Pan S (2013) Optimal immobilization of β-glucosidase into chitosan beads using response surface methodology. Electron J Biotechnol 16:6–6.  https://doi.org/10.2225/vol16-issue6-fulltext-5 CrossRefGoogle Scholar
  170. Zhu A, Yuan L, Liao T (2008) Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan. Int J Pharm 350:361–368.  https://doi.org/10.1016/j.ijpharm.2007.09.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Madan L. Verma
    • 1
    • 2
  • Sandeep Kumar
    • 3
  • Anamika Das
    • 4
  • Jatinder S. Randhawa
    • 5
  • Munusamy Chamundeeswari
    • 6
  1. 1.Centre for Chemistry and BiotechnologyDeakin UniversityGeelongAustralia
  2. 2.Department of BiotechnologyDr. YS Parmar University of Horticulture and ForestrySolanIndia
  3. 3.Teva API (TAPI)Greater NoidaIndia
  4. 4.University College of Paramedical SciencesGuru Kashi UniversityTalwandi SaboIndia
  5. 5.Centre for Environmental Sciences and TechnologyCentral University of PunjabBathindaIndia
  6. 6.Department of BiotechnologySt. Joseph’s College of EngineeringChennaiIndia

Personalised recommendations