Ecotoxic Effect of Photocatalytic Active Nanoparticles on Human Health and the Environment

  • Majid PeyraviEmail author
  • Soodabeh Khalili
  • Mohsen Jahanshahi
  • Seyedeh Fatemeh Zakeritabar
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanotechnology is a major newfound scientific growth area that can exhibit a variety of risks for environments. The small size of nanoparticles and their morphology, as well as their surface properties, provide surfaces that can bind and carry toxic chemical contaminants. For hazard evaluation of nanoparticles, quantitative ecotoxicological data are required. This chapter presents a complete literature review on the toxicity (L(E) C50 values) of nanoparticles (NPs) to ecological receptors such as algae and aquatic plants (1) to recognize the most harmful nanoparticles and sensitive organism classes; (2) to identify the biological characteristics of the (photocatalytic) nanoparticles that have the most biological importance; and (3) to provide accordant ecotoxicological information for further hazardous assessment. The focus was assessed on some synthetic nanoparticles and organism groups representing main food hain levels (algae and aquatic plants). Furthermore, this chapter provides an extensive literature overview on Ag, CuO and ZnO, and TiO2 NPs toxicity mechanisms on the basis of different environmentally accordant test species in vitro and factors to modify the ecotoxic effect of NPs. Photo-induced toxicity can be another considerable mechanism of toxicity under environmentally accordant UV irradiation. However, the usual rarity of experimental data, their disparate distribution among the photocatalytic nanoparticles and environmental states, the difficulties in modifying nanoparticles and obtaining homogeneous and stable suspensions, and the confusion from indistinct metrics, are discussed.


  1. Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532PubMedCrossRefGoogle Scholar
  2. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6):842–852CrossRefGoogle Scholar
  3. Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8(21):3326–3337PubMedCrossRefGoogle Scholar
  4. Armelao L, Barreca D, Bottaro G, Gasparotto A, Maccato C, Maragno C, Tondello E, Štangar UL, Bergant M, Mahne D (2007) Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology 18(37):375709CrossRefGoogle Scholar
  5. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468PubMedCrossRefGoogle Scholar
  6. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart:689419. Scholar
  7. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. Scholar
  8. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.
  9. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.
  10. Blaise C, Gagné F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23(5):591–598PubMedCrossRefGoogle Scholar
  11. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bondarenko O, Ivask A, Käkinen A, Kahru A (2012) Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut 169:81–89PubMedCrossRefGoogle Scholar
  13. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials. Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32PubMedCrossRefGoogle Scholar
  14. Boxall AB, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Department of the Environment and Rural Affairs, London, p 89Google Scholar
  15. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52(8):2346–2348PubMedPubMedCentralGoogle Scholar
  17. Cattaneo AG, Gornati R, Chiriva-Internati M, Bernardini G (2009) Ecotoxicology of nanomaterials: the role of invertebrate testing. Invertebr Surviv J 6(1):78–97Google Scholar
  18. Cheloni G, Slaveykova VI (2013) Optimization of the C11-BODIPY581/591 dye for the determination of lipid oxidation in Chlamydomonas reinhardtii by flow cytometry. Cytometry A 83(10):952–961PubMedPubMedCentralGoogle Scholar
  19. Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309(1):126–134PubMedCrossRefPubMedCentralGoogle Scholar
  20. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588PubMedCrossRefPubMedCentralGoogle Scholar
  21. Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17(5):421PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dalai S, Pakrashi S, Kumar RS, Chandrasekaran N, Mukherjee A (2012) A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1(2):116–130CrossRefGoogle Scholar
  23. Dasari TP, Pathakoti K, Hwang HM (2013) Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. J Environ Sci 25(5):882–888CrossRefGoogle Scholar
  24. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18PubMedCrossRefPubMedCentralGoogle Scholar
  25. Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211:3–29PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6, to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159(7):1749–1756PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40(24):7688–7693CrossRefGoogle Scholar
  28. EPA U (2009) External review draft-nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Triangle ParkGoogle Scholar
  29. Farbod M, Jafarpoor E (2012) Fabrication of different ZnO nanostructures and investigation of morphology dependence of their photocatalytic properties. Mater Lett 85:47–49CrossRefGoogle Scholar
  30. Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fenoglio I, Greco G, Livraghi S, Fubini B (2009) Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chem Eur J 15(18):4614–4621PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fernandes T, Nielsen H, Burridge T, Stone V (2007) Toxicity of nanoparticles to embryos of the marine macroalgae Fucus serratus. In: 2nd international conference on the environmental effects of nanoparticles and nanomaterials, London, England, 2007Google Scholar
  33. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121(3):829–838PubMedPubMedCentralCrossRefGoogle Scholar
  34. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490PubMedCrossRefGoogle Scholar
  35. Friehs E, Al Salka Y, Jonczyk R, Lavrentieva A, Jochums A, Walter JG, Stahl F, Scheper T, Bahnemann D (2016) Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis. J Photochem Photobiol C Photochem Rev 29:1–28CrossRefGoogle Scholar
  36. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222PubMedCrossRefGoogle Scholar
  37. Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978PubMedCrossRefGoogle Scholar
  38. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639CrossRefGoogle Scholar
  39. Han J, Qiu W, Gao W (2010) Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater 178(1-3):115–122PubMedCrossRefGoogle Scholar
  40. Hao L, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110PubMedCrossRefGoogle Scholar
  41. Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269(2-3):190–197PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hatamie A, Khan A, Golabi M, Turner AP, Beni V, Mak WC, Sadollahkhani A, Alnoor H, Zargar B, Bano S, Nur O (2015) Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 31(39):10913–10921PubMedCrossRefPubMedCentralGoogle Scholar
  43. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316PubMedCrossRefGoogle Scholar
  44. Hernández-Ramírez A, Medina-Ramírez I (2015) Semiconducting materials. In: Photocatalytic semiconductors. Springer, Cham, pp 1–40Google Scholar
  45. Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42(4):586–591CrossRefGoogle Scholar
  46. Huang CP, Cha DK, Ismat SS (2005) Progress report: short-term chronic toxicity of photocatalytic nanoparticles to bacteria, algae, and zooplankton. EPA Grant number: R831721Google Scholar
  47. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res 13(4):225–232CrossRefGoogle Scholar
  48. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983PubMedCrossRefGoogle Scholar
  49. Idris NM, Lucky SS, Li Z, Huang K, Zhang Y (2014) Photoactivation of core–shell titania coated upconversion nanoparticles and their effect on cell death. J Mater Chem B 2(40):7017–7026CrossRefGoogle Scholar
  50. Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398(2):701–716PubMedCrossRefGoogle Scholar
  51. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383PubMedCrossRefGoogle Scholar
  52. Jiang KJ, Kitamura T, Yin H, Ito S, Yanagida S (2002) Dye-sensitized solar cells using brookite nanoparticle TiO2 films as electrodes. Chem Lett 31(9):872–873CrossRefGoogle Scholar
  53. Kägi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156(2):233–239CrossRefGoogle Scholar
  54. Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2-3):105–119PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43(17):6757–6763PubMedCrossRefPubMedCentralGoogle Scholar
  58. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851PubMedCrossRefPubMedCentralGoogle Scholar
  59. Knox JP (1995) The extracellular matrix in higher plants. 4. Developmentally regulated proteoglycans and glycoproteins of the plant cell surface. FASEB J 9(11):1004–1012PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kus M, Gernjak W, RodrÃguez SM, Icli S (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale. J Sol Energ Eng 128(3):331–337CrossRefGoogle Scholar
  62. Lakshmi Prasanna V, Vijayaraghavan R (2015) Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33):9155–9162PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lee WM, An YJ (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91(4):536–544PubMedCrossRefPubMedCentralGoogle Scholar
  64. Li S, Pan X, Wallis LK, Fan Z, Chen Z, Diamond SA (2014) Comparison of TiO2 nanoparticle and graphene–TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes. Chemosphere 112:62–69PubMedCrossRefGoogle Scholar
  65. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250PubMedCrossRefGoogle Scholar
  66. Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011) Antifungal activity of ZnO nanoparticles: the role of ROS mediated cell injury. Nanotechnology 22(10):105101PubMedCrossRefGoogle Scholar
  67. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85PubMedCrossRefGoogle Scholar
  68. Maynard A, Michelson E (2006) The nanotechnology consumer products inventory. Woodrow Wilson International Center for Scholars, Washington, DC, accessed 23 MarGoogle Scholar
  69. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS (2006) Safe handling of nanotechnology. Nature 444(7117):267–269PubMedCrossRefGoogle Scholar
  70. Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159(3):677–684PubMedCrossRefGoogle Scholar
  71. Miao AJ, Quigg A, Schwehr K, Xu C, Santschi P (2007) Engineered silver nanoparticles (ESNs) in coastal marine environments: bioavailability and toxic effects to the phytoplankton Thalassiosira weissflogii. In: 2nd international conference on the environmental effects of nanoparticles and nanomaterials, Sept 24, 2007, vol 25Google Scholar
  72. Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7(1):e30321PubMedPubMedCentralCrossRefGoogle Scholar
  73. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976PubMedCrossRefGoogle Scholar
  74. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346PubMedCrossRefGoogle Scholar
  75. Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269(2-3):182–189PubMedCrossRefGoogle Scholar
  76. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453PubMedCrossRefGoogle Scholar
  77. Navarro E, Piccapietra F, Wagner B, Kägi R, Odzak N, Sigg L, Behra R (2007) Toxicity mechanisms of silver nanoparticles to Chlamydomonas reinhardtii. In: 2nd international conference on the environmental effects of nanoparticles and nanomaterials (oral presentation), London, UK, 2007Google Scholar
  78. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386PubMedCrossRefGoogle Scholar
  79. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627PubMedCrossRefGoogle Scholar
  80. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ohtani B (2013) New and future developments in catalysis: chapter 5. Principle of photocatalysis and design of active photocatalysts. Elsevier Inc. Chapters.Google Scholar
  82. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pappa A, Franco R, Schoneveld O, Galanis A, Sandaltzopoulos R, Panayiotidis MI (2007) Sulfur-containing compounds in protecting against oxidant-mediated lung diseases. Curr Med Chem 14(24):2590–2596PubMedCrossRefGoogle Scholar
  84. Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008) Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24(13):6659–6667PubMedCrossRefGoogle Scholar
  85. Pichat P (2007) A brief overview of photocatalytic mechanisms and pathways in water. Water Sci Technol 55(12):167–173PubMedCrossRefGoogle Scholar
  86. Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart. Scholar
  87. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. Scholar
  88. Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M (2013) Protein–nanoparticle interactions. Springer, BerlinCrossRefGoogle Scholar
  89. Reeves JF, Davies SJ, Dodd NJ, Jha AN (2008) Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res-Fund Mol M 640(1):113–122CrossRefGoogle Scholar
  90. Rodriguez-Moya M, Li D, Alvarez PJ (2007) Inactivation of virus in water by nanoparticles under UV irradiation. Annual meeting, Salt Lake City, UT, 2007Google Scholar
  91. Rozhkova EA, Ulasov I, Lai B, Dimitrijevic NM, Lesniak MS, Rajh T (2009) A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett 9(9):3337–3342PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86(5):521–522CrossRefGoogle Scholar
  93. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986PubMedCrossRefGoogle Scholar
  94. Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360(3):794–802CrossRefGoogle Scholar
  95. Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116:90–101PubMedCrossRefGoogle Scholar
  96. Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71(4):307–317PubMedCrossRefPubMedCentralGoogle Scholar
  97. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44(14):5649–5654PubMedCrossRefPubMedCentralGoogle Scholar
  99. Terashima M, Nagao S (2007) Solubilization of [60]fullerene in water by aquatic humic substances. Chem Lett 36(2):302–303CrossRefGoogle Scholar
  100. Tong T, Binh CT, Kelly JJ, Gaillard JF, Gray KA (2013) Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: effects of environmental factors. Water Res 47(7):2352–2362PubMedCrossRefPubMedCentralGoogle Scholar
  101. Valko MM, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208PubMedPubMedCentralCrossRefGoogle Scholar
  102. Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17(5):410–420PubMedCrossRefPubMedCentralGoogle Scholar
  103. Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeter Biodegr 60(2):96–102CrossRefGoogle Scholar
  104. von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps. Nanotoxicology 8(6):605–630CrossRefGoogle Scholar
  105. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171(3):99–110PubMedCrossRefPubMedCentralGoogle Scholar
  106. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. ACS Publ 40(14):4336–4345CrossRefGoogle Scholar
  107. Xi L, Lek JY, Liang YN, Boothroyd C, Zhou W, Yan Q, Hu X, Chiang FB, Lam YM (2011) Stability studies of CdSe nanocrystals in an aqueous environment. Nanotechnology 22(27):275706PubMedCrossRefPubMedCentralGoogle Scholar
  108. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134PubMedPubMedCentralCrossRefGoogle Scholar
  109. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331PubMedPubMedCentralCrossRefGoogle Scholar
  110. Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452PubMedCrossRefPubMedCentralGoogle Scholar
  111. Xue C, Wu J, Lan F, Liu W, Yang X, Zeng F, Xu H (2010) Nano titanium dioxide induces the generation of ROS and potential damage in HaCa T cells under UVA irradiation. J Nanosci Nanotechnol 10(12):8500–8507PubMedCrossRefPubMedCentralGoogle Scholar
  112. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132PubMedCrossRefPubMedCentralGoogle Scholar
  113. Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2011) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127PubMedCrossRefPubMedCentralGoogle Scholar
  114. Yu LP, Fang T, Xiong DW, Zhu WT, Sima XF (2011) Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, OH production and particle dissolution in distilled water. J Environ Monit 13(7):1975–1982PubMedCrossRefPubMedCentralGoogle Scholar
  115. Zemke-White WL, Clements KD, Harris PJ (2000) Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. J Exp Mar Biol Ecol 245(1):57–68CrossRefGoogle Scholar
  116. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9(3):479–489CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Majid Peyravi
    • 1
    • 2
    Email author
  • Soodabeh Khalili
    • 2
  • Mohsen Jahanshahi
    • 2
  • Seyedeh Fatemeh Zakeritabar
    • 2
  1. 1.Department of Chemical EngineeringBabol Noshirvani University of TechnologyBabolIran
  2. 2.Nanotechnology Research Institute, Babol Noshirvani University of TechnologyBabolIran

Personalised recommendations