Advertisement

Recent Progress on Novel Ag–TiO2 Nanocomposites for Antibacterial Applications

  • Jai PrakashEmail author
  • B. S. Kaith
  • Shuhui Sun
  • Stefano Bellucci
  • Hendrik C. Swart
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Bacterial infection is a major problem in our society because some diseases originate from various microbes. Therefore, much research has been devoted to the design and engineering of novel nanomaterials with improved functionality for bacterial disinfection. In this regard, noble metal and metal oxides such as silver (Ag) and titanium dioxide (TiO2) nanostructures, respectively, have shown great potential in the field of nanobiotechnology for antibacterial applications because of their unique optical properties. Furthermore, coupling of these nanomaterials has shown promising effects extending their applicability in solar light with enhanced photo-induced antibacterial properties. The present chapter reviews recent progress in novel functional Ag-TiO2 nanocomposites for their antibacterial applications with special emphasis on their mechanisms and real practical applications.

Keywords

Nanocomposites Antibacterial Photocatalysis Photodegradation 

Notes

Acknowledgments

The authors (J.P., S.S.) acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds de Recherche du Québec-Nature et Technologies (FRQNT). J.P. wishes to acknowledge FRQNT for Merit Scholarship (ranked#1, 2017–2018), Department of Science and Technology (DST), India for the prestigious award of INSPIRE faculty (IFA/2015/MS-57), UFS/NRF (84415), South Africa for Y1 rating award (2016), and Shastri Indo-Canadian Institute for SSTSG (2017–18) award.

References

  1. Akhavan O (2009) Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci 336(1):117–124.  https://doi.org/10.1016/j.jcis.2009.03.018CrossRefPubMedGoogle Scholar
  2. Akhavan O, Ghaderi E (2009) Capping antibacterial Ag nanorods aligned on Ti interlayer by mesoporous TiO2 layer. Surf Coat Technol 203(20):3123–3128.  https://doi.org/10.1016/j.surfcoat.2009.03.033CrossRefGoogle Scholar
  3. Ali T, Ahmed A, Alam U, Imran U, Tripathi P, Muneer M (2018) Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater Chem Phys 212:325–335.  https://doi.org/10.1016/j.matchemphys.2018.03.052CrossRefGoogle Scholar
  4. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart:689419.  https://doi.org/10.1155/2014/689419CrossRefGoogle Scholar
  5. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612.  https://doi.org/10.1021/acs.langmuir.5b03081CrossRefGoogle Scholar
  6. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.  https://doi.org/10.3389/fchem.2019.00065CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bahadur J, Agrawal S, Panwar V, Parveen A, Pal K (2016) Antibacterial properties of silver doped TiO2 nanoparticles synthesized via sol-gel technique. Macromol Res 24(6):488–493.  https://doi.org/10.1007/s13233-016-4066-9CrossRefGoogle Scholar
  9. Barani S, Ahari H, Bazgir S (2018) Increasing the shelf life of pikeperch (Sander lucioperca) fillets affected by low-density polyethylene/Ag/TiO2 nanocomposites experimentally produced by sol-gel and melt-mixing methods. Int J Food Prop 21(1):1923–1936.  https://doi.org/10.1080/10942912.2018.1508162CrossRefGoogle Scholar
  10. Becerra J, Zaderenko AP, Sayagués MJ, Ortiz R, Ortiz P (2018) Synergy achieved in silver-TiO2 nanocomposites for the inhibition of biofouling on limestone. Build Environ 141:80–90.  https://doi.org/10.1016/j.buildenv.2018.05.020CrossRefGoogle Scholar
  11. Binyu Y, Man LK, Guo Q, Ming LW, Jun Y (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22(11):115603CrossRefGoogle Scholar
  12. Cai T, Liu Y, Wang L, Zhang S, Ma J, Dong W, Zeng Y, Yuan J, Liu C, Luo S (2018) “Dark deposition” of Ag nanoparticles on TiO2: improvement of electron storage capacity to boost “memory catalysis” activity. ACS Appl Mater Interfaces 10(30):25350–25359.  https://doi.org/10.1021/acsami.8b06076CrossRefPubMedGoogle Scholar
  13. Cao H, Liu X, Meng F, Chu PK (2011) Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 32(3):693–705.  https://doi.org/10.1016/j.biomaterials.2010.09.066CrossRefPubMedGoogle Scholar
  14. Cao C, Huang J, Li L, Zhao C, Yao J (2017) Highly dispersed Ag/TiO2 via adsorptive self-assembly for bactericidal application. RSC Adv 7(22):13347–13352.  https://doi.org/10.1039/C7RA00758BCrossRefGoogle Scholar
  15. Chen Q, Yu Z, Yang P, Zeng G, Shi H, Yang X, Li F, Yang S, He Y (2017) Enhancing the photocatalytic and antibacterial property of polyvinylidene fluoride membrane by blending Ag–TiO2 nanocomposites. J Mater Sci Mater Electron 28(4):3865–3874.  https://doi.org/10.1007/s10854-016-5999-7CrossRefGoogle Scholar
  16. Chiang H-H, Wang S-H, Chou H-Y, Huang C-C, Tsai T-L, Yang Y-C, Lee J-W, Lin T-Y, Wu Y-J, Chen C-C (2014) Surface modification of ATO photocatalyst on its bactericidal effect against Escherichia coli. J Mar Sci Technol 22(2):269–276.  https://doi.org/10.6119/jmst-014-0307-1CrossRefGoogle Scholar
  17. Deshmukh SP, Mullani SB, Koli VB, Patil SM, Kasabe PJ, Dandge PB, Pawar SA, Delekar SD (2018) Ag nanoparticles connected to the surface of TiO2 electrostatically for antibacterial photoinactivation studies. Photochem Photobiol 0(0).  https://doi.org/10.1111/php.12983CrossRefGoogle Scholar
  18. Dror-Ehre A, Mamane H, Belenkova T, Markovich G, Adin A (2009) Silver nanoparticle–E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interface Sci 339(2):521–526.  https://doi.org/10.1016/j.jcis.2009.07.052CrossRefPubMedGoogle Scholar
  19. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature (Lond) 238:37.  https://doi.org/10.1038/238037a0CrossRefGoogle Scholar
  20. Guo MY, Liu F, Leung YH, He Y, Ng AMC, Djurišić AB, Li H, Shih K, Chan WK (2017) Annealing-induced antibacterial activity in TiO2 under ambient light. J Phys Chem C 121(43):24060–24068.  https://doi.org/10.1021/acs.jpcc.7b07325CrossRefGoogle Scholar
  21. Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ (2010) A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir 26(4):2805–2810.  https://doi.org/10.1021/la902844rCrossRefPubMedGoogle Scholar
  22. Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38(5):439–447.  https://doi.org/10.1080/1071576042000206487CrossRefPubMedGoogle Scholar
  23. Hoseinnejad M, Jafari SM, Katouzian I (2018) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44(2):161–181.  https://doi.org/10.1080/1040841X.2017.1332001CrossRefPubMedGoogle Scholar
  24. Jai P, Kumar P, Harris RA, Swart C, Neethling JH, Janse van Vuuren A, Swart HC (2016) Synthesis, characterization and multifunctional properties of plasmonic Ag–TiO2 nanocomposites. Nanotechnology 27(35):355707CrossRefGoogle Scholar
  25. Jalali SAH, Allafchian AR, Banifatemi SS, Ashrafi Tamai I (2016) The antibacterial properties of Ag/TiO2 nanoparticles embedded in silane sol–gel matrix. J Taiwan Inst Chem Eng 66:357–362.  https://doi.org/10.1016/j.jtice.2016.06.011CrossRefGoogle Scholar
  26. Jiang Y, Liu D, Cho M, Lee SS, Zhang F, Biswas P, Fortner JD (2016) In situ photocatalytic synthesis of Ag nanoparticles (nAg) by crumpled graphene oxide composite membranes for filtration and disinfection applications. Environ Sci Technol 50(5):2514–2521.  https://doi.org/10.1021/acs.est.5b04584CrossRefPubMedGoogle Scholar
  27. Jiang X, Lv B, Wang Y, Shen Q, Wang X (2017) Bactericidal mechanisms and effector targets of TiO2 and Ag-TiO2 against Staphylococcus aureus. J Med Microbiol 66(4):440–446.  https://doi.org/10.1099/jmm.0.000457CrossRefPubMedPubMedCentralGoogle Scholar
  28. Joost U, Juganson K, Visnapuu M, Mortimer M, Kahru A, Nõmmiste E, Joost U, Kisand V, Ivask A (2015) Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J Photochem Photobiol B Biol 142:178–185.  https://doi.org/10.1016/j.jphotobiol.2014.12.010CrossRefGoogle Scholar
  29. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Technol 86(3):682–689.  https://doi.org/10.1007/s10971-018-4666-2CrossRefGoogle Scholar
  30. Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19(2):444.  https://doi.org/10.3390/ijms19020444CrossRefPubMedCentralGoogle Scholar
  31. Keleher J, Bashant J, Heldt N, Johnson L, Li Y (2002) Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications. World J Microbiol Biotechnol 18(2):133–139.  https://doi.org/10.1023/a:1014455310342CrossRefGoogle Scholar
  32. Kiwi J, Nadtochenko V (2004) New evidence for TiO2 photocatalysis during bilayer lipid peroxidation. J Phys Chem B 108(45):17675–17684.  https://doi.org/10.1021/jp048281aCrossRefGoogle Scholar
  33. Kong H, Song J, Jang J (2010) Photocatalytic antibacterial capabilities of TiO2−biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ Sci Technol 44(14):5672–5676.  https://doi.org/10.1021/es1010779CrossRefPubMedGoogle Scholar
  34. Korshed P, Li L, Liu Z, Mironov A, Wang T (2017) Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells. Int J Med 2018(13):89–101.  https://doi.org/10.2147/IJN.S140222CrossRefGoogle Scholar
  35. Kubacka A, Ferrer M, Martínez-Arias A, Fernández-García M (2008) Ag promotion of TiO2-anatase disinfection capability: study of Escherichia coli inactivation. Appl Catal B Environ 84(1):87–93.  https://doi.org/10.1016/j.apcatb.2008.02.020CrossRefGoogle Scholar
  36. Kubacka A, Cerrada ML, Serrano C, Fernández-García M, Ferrer M, Fernández-Garcia M (2009a) Plasmonic nanoparticle/polymer nanocomposites with enhanced photocatalytic antimicrobial properties. J Phys Chem C 113(21):9182–9190.  https://doi.org/10.1021/jp901337eCrossRefGoogle Scholar
  37. Kubacka A, Ferrer M, Cerrada ML, Serrano C, Sánchez-Chaves M, Fernández-García M, de Andrés A, Jiménez RJ, Riobóo FF-M, Fernández-García M (2009b) Boosting TiO2-anatase antimicrobial activity: polymer-oxide thin films. Appl Catal B Environ 89(3):441–447.  https://doi.org/10.1016/j.apcatb.2009.01.002CrossRefGoogle Scholar
  38. Li M, Noriega-Trevino ME, Nino-Martinez N, Marambio-Jones C, Wang J, Damoiseaux R, Ruiz F, Hoek EMV (2011) Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environ Sci Technol 45(20):8989–8995.  https://doi.org/10.1021/es201675mCrossRefPubMedGoogle Scholar
  39. Li X, Xie J, Liao L, Jiang X, Heqing F (2017a) UV-curable polyurethane acrylate–Ag/TiO2 nanocomposites with superior UV light antibacterial activity. Int J Polym Mater Polym Biomater 66(16):835–843.  https://doi.org/10.1080/00914037.2016.1276063CrossRefGoogle Scholar
  40. Li S, Zhu T, Huang J, Guo Q, Chen G, Lai Y (2017b) Durable antibacterial and UV-protective Ag/TiO(2)@ fabrics for sustainable biomedical application. Int J Nanomedicine 12:2593–2606.  https://doi.org/10.2147/IJN.S132035CrossRefPubMedPubMedCentralGoogle Scholar
  41. Liou J-W, Chang H-H (2012) Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp 60(4):267–275.  https://doi.org/10.1007/s00005-012-0178-xCrossRefGoogle Scholar
  42. Liu N, Chang Y, Feng Y, Cheng Y, Sun X, Jian H, Feng Y, Li X, Zhang H (2017) {101}–{001} surface heterojunction-enhanced antibacterial activity of titanium dioxide nanocrystals under sunlight irradiation. ACS Appl Mater Interfaces 9(7):5907–5915.  https://doi.org/10.1021/acsami.6b16373CrossRefPubMedGoogle Scholar
  43. Machida M, Norimoto K, Kimura T (2005) Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware. J Am Ceram Soc 88(1):95–100.  https://doi.org/10.1111/j.1551-2916.2004.00006.xCrossRefGoogle Scholar
  44. Mai L, Wang D, Zhang S, Xie Y, Huang C, Zhang Z (2010) Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate. Appl Surf Sci 257(3):974–978.  https://doi.org/10.1016/j.apsusc.2010.08.003CrossRefGoogle Scholar
  45. Maness P-C, Smolinski S, Blake DM, Zheng H, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098PubMedPubMedCentralGoogle Scholar
  46. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29(1):211–214CrossRefGoogle Scholar
  47. Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl Environ Microbiol 54(6):1330–1333PubMedPubMedCentralGoogle Scholar
  48. Mukherjee M, De S (2018) Antibacterial polymeric membranes: a short review. Environ Sci Water Res Technol 4(8):1078–1104.  https://doi.org/10.1039/C8EW00206ACrossRefGoogle Scholar
  49. Nigussie GY, Tesfamariam GM, Tegegne BM, Weldemichel YA, Gebreab TW, Gebrehiwot DG, Gebremichel GE (2018) Antibacterial activity of Ag-doped TiO2 and Ag-doped ZnO nanoparticles. Int J Photoenergy 2018:7.  https://doi.org/10.1155/2018/5927485CrossRefGoogle Scholar
  50. Noori Hashemabad Z, Shabanpour B, Azizi H, Ojagh SM, Alishahi A (2017) Effect of TiO2 nanoparticles on the antibacterial and physical properties of low-density polyethylene film. Polym-Plast Technol Eng 56(14):1516–1527.  https://doi.org/10.1080/03602559.2016.1278022CrossRefGoogle Scholar
  51. Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV (2007) Titania and silver–titania composite films on glass—potent antimicrobial coatings. J Mater Chem 17(1):95–104.  https://doi.org/10.1039/B611740FCrossRefGoogle Scholar
  52. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720.  https://doi.org/10.1128/aem.02218-06CrossRefPubMedPubMedCentralGoogle Scholar
  53. Patil MP, Kim G-D (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101(1):79–92.  https://doi.org/10.1007/s00253-016-8012-8CrossRefPubMedGoogle Scholar
  54. Peng Y, Yu Z, Yang P, Zeng G (2018) Antibacterial photocatalytic self-cleaning poly(vinylidene fluoride) membrane for dye wastewater treatment. Polym Adv Technol 29(1):254–262.  https://doi.org/10.1002/pat.4110CrossRefGoogle Scholar
  55. Prakash J, Vinod K, Kroon RE, Asokan K, Rigato V, Chae KH, Gautam S, Swart HC (2016) Optical and surface enhanced Raman scattering properties of Au nanoparticles embedded in and located on a carbonaceous matrix. Phys Chem Chem Phys 18(4):2468–2480.  https://doi.org/10.1039/C5CP06134BCrossRefPubMedGoogle Scholar
  56. Prakash J, Sun S, Swart HC, Gupta RK (2018) Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Appl Mater Today 11:82–135.  https://doi.org/10.1016/j.apmt.2018.02.002CrossRefGoogle Scholar
  57. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961.  https://doi.org/10.1155/2014/963961CrossRefGoogle Scholar
  58. Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart.  https://doi.org/10.1155/2013/431218CrossRefGoogle Scholar
  59. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefPubMedPubMedCentralGoogle Scholar
  60. Prasad R, Kumar V, Kumar M (2017) Nanotechnology: food and environmental paradigm. Springer Nature, Singapore. isbn:978-981-10-4678-0CrossRefGoogle Scholar
  61. Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing. https://www.springer.com/978-3-319-99570-0. isbn:978-3-319-99570-0
  62. Prema P, Thangapandiyan S, Immanuel G (2017) CMC stabilized nano silver synthesis, characterization and its antibacterial and synergistic effect with broad spectrum antibiotics. Carbohydr Polym 158:141–148.  https://doi.org/10.1016/j.carbpol.2016.11.083CrossRefPubMedGoogle Scholar
  63. Quiñones-Jurado ZV, Waldo-Mendoza MÁ, Aguilera-Bandin HM, Villabona-Leal EG, Cervantes-González E, Pérez E (2014) Silver nanoparticles supported on TiO2 and their antibacterial properties: effect of surface confinement and nonexistence of plasmon resonance. Mater Sci Appl 05((12)):9.  https://doi.org/10.4236/msa.2014.512091CrossRefGoogle Scholar
  64. Roguska A, Belcarz A, Piersiak T, Pisarek M, Ginalska G, Lewandowska M (2012) Evaluation of the antibacterial activity of Ag-loaded TiO2 nanotubes. Eur J Inorg Chem 2012(32):5199–5206.  https://doi.org/10.1002/ejic.201200508CrossRefGoogle Scholar
  65. Santhosh M, Natarajan K (2015) Antibiofilm activity of epoxy/Ag-TiO2 polymer nanocomposite coatings against Staphylococcus aureus and Escherichia coli. Coatings 5(2):95CrossRefGoogle Scholar
  66. Sarkar AK, Saha A, Midya L, Banerjee C, Mandre N, Panda AB, Pal S (2017) Cross-linked biopolymer stabilized exfoliated titanate nanosheet-supported AgNPs: a green sustainable ternary nanocomposite hydrogel for catalytic and antimicrobial activity. ACS Sustain Chem Eng 5(2):1881–1891.  https://doi.org/10.1021/acssuschemeng.6b02594CrossRefGoogle Scholar
  67. Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal A Gen 462-463:178–195.  https://doi.org/10.1016/j.apcata.2013.04.039CrossRefGoogle Scholar
  68. Singh N, Prakash J, Gupta RK (2017a) Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites. Mol Syst Des Eng 2(4):422–439.  https://doi.org/10.1039/C7ME00038CCrossRefGoogle Scholar
  69. Singh N, Prakash J, Misra M, Sharma A, Gupta RK (2017b) Dual functional Ta-doped electrospun TiO2 nanofibers with enhanced photocatalysis and SERS detection for organic compounds. ACS Appl Mater Interfaces 9(34):28495–28507.  https://doi.org/10.1021/acsami.7b07571CrossRefPubMedGoogle Scholar
  70. Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol A Chem 156(1):227–233.  https://doi.org/10.1016/S1010-6030(02)00434-3CrossRefGoogle Scholar
  71. Tallósy SP, Janovák L, Ménesi J, Nagy E, Juhász Á, Balázs L, Deme I, Buzás N, Dékány I (2014) Investigation of the antibacterial effects of silver-modified TiO2 and ZnO plasmonic photocatalysts embedded in polymer thin films. Environ Sci Pollut Res 21(19):11155–11167.  https://doi.org/10.1007/s11356-014-2568-6CrossRefGoogle Scholar
  72. Ubonchonlakate K, Sikong L, Saito F (2012) Photocatalytic disinfection of P. aeruginosa bacterial Ag-doped TiO2 film. Procedia Eng 32:656–662.  https://doi.org/10.1016/j.proeng.2012.01.1323CrossRefGoogle Scholar
  73. Varnagiris S, Sakalauskaite S, Tuckute S, Lelis M, Daugelavicius R, Milcius D (2017) Investigation of E. coli bacteria inactivation by photocatalytic activity of TiO2 coated expanded polystyrene foam. Mater Res Express 4(3):036409CrossRefGoogle Scholar
  74. Verma SK, Jha E, Panda PK, Thirumurugan A, Shubhransu P, Parashar SKS, Suar M (2018) Molecular insights to alkaline based bio-fabrication of silver nanoparticles for inverse cytotoxicity and enhanced antibacterial activity. Mater Sci Eng C 92:807–818.  https://doi.org/10.1016/j.msec.2018.07.037CrossRefGoogle Scholar
  75. Wang H, Wei L, Wang Z, Chen S (2016) Preparation, characterization and long-term antibacterial activity of Ag–poly(dopamine)–TiO2 nanotube composites. RSC Adv 6(17):14097–14104.  https://doi.org/10.1039/C5RA22061KCrossRefGoogle Scholar
  76. Wilke CM, Tong T, Gaillard J-F, Gray KA (2016) Attenuation of microbial stress due to nano-Ag and nano-TiO2 interactions under dark conditions. Environ Sci Technol 50(20):11302–11310.  https://doi.org/10.1021/acs.est.6b02271CrossRefPubMedGoogle Scholar
  77. Wilke CM, Wunderlich B, Gaillard J-F, Gray KA (2018) Synergistic bacterial stress results from exposure to nano-Ag and nano-TiO2 mixtures under light in environmental media. Environ Sci Technol 52(5):3185–3194.  https://doi.org/10.1021/acs.est.7b05629CrossRefPubMedGoogle Scholar
  78. Wu T-S, Wang K-X, Li G-D, Sun S-Y, Sun J, Chen J-S (2010) Montmorillonite-supported Ag/TiO2 nanoparticles: an efficient visible-light bacteria photodegradation material. ACS Appl Mater Interfaces 2(2):544–550.  https://doi.org/10.1021/am900743dCrossRefPubMedGoogle Scholar
  79. Yang H, Ren Y-y, Wang T, Wang C (2016) Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract. Results Phys 6:299–304.  https://doi.org/10.1016/j.rinp.2016.05.012CrossRefGoogle Scholar
  80. Yaşa İ, Lkhagvajav N, Koizhaiganova M, Çelik E, Sarı Ö (2012) Assessment of antimicrobial activity of nanosized Ag-doped TiO2 colloids. World J Microbiol Biotechnol 28(7):2531–2539.  https://doi.org/10.1007/s11274-012-1061-yCrossRefPubMedGoogle Scholar
  81. Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol−gel method. Environ Sci Technol 43(8):2905–2910.  https://doi.org/10.1021/es803450fCrossRefPubMedGoogle Scholar
  82. Zhang L, Yu JC, Yip HY, Li Q, Kwong KW, Xu A-W, Wong PK (2003) Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir 19(24):10372–10380.  https://doi.org/10.1021/la035330mCrossRefGoogle Scholar
  83. Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chu PK (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32(24):5706–5716.  https://doi.org/10.1016/j.biomaterials.2011.04.040CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jai Prakash
    • 1
    • 2
    • 3
    Email author
  • B. S. Kaith
    • 4
  • Shuhui Sun
    • 2
  • Stefano Bellucci
    • 5
  • Hendrik C. Swart
    • 3
  1. 1.Department of ChemistryNational Institute of Technology HamirpurHamirpurIndia
  2. 2.Department of Energy, Materials and TelecommunicationsInstitut National de la Recherche Scientifique (INRS)MontrealCanada
  3. 3.Department of PhysicsUniversity of the Free StateBloemfonteinSouth Africa
  4. 4.Department of ChemistryDr. B.R. Ambedkar National Institute of TechnologyJalandharIndia
  5. 5.INFN Laboratori Nazionali di FrascatiFrascati, RomeItaly

Personalised recommendations