Advertisement

Application of Nanotechnology in Plant Protection by Phytopathogens: Present and Future Prospects

  • Fouad Mokrini
  • Rachid Bouharroud
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Plant diseases are one of the major factors that can limit crop productivity and have a serious impact on the economic output of a farm. They cause 14% yield losses to agriculture in the world. Nanotechnology is emerging in agriculture, and it provides efficient and sustainable food production by improving rapid diagnosis and detection of different diseases and pest incidence in plants using nanoformulations, enhancing the ability of plants to control diseases and environmentally safe application of chemicals and increasing the efficacy of pesticides by using only minor doses through nano-based materials. Recently, several studies have reported that nanoformulations can be used for improving the yield and quality of several crops by reducing the amount of chemicals released in the environment. This chapter provides a compilation of technologies involved in synthesis of nanoparticles and then an overview of the application of nanotechnology in agriculture with special focus on plant protection products and nanopesticides. In fact, the nanotechnologies potency was discussed in an integrated pest management issue as cost-effective and eco-friendly methodologies. The advantages and limitations of nanotechnologies were also discussed in order to provide a support in making decision.

Keywords

Phytopathogens Nanoformulations Nanopesticides Insect pest 

References

  1. Abd El-Hai KM, El-Metwally MA, El-Baz SM, Zeid AM (2009) The use of antioxidants and microelements for controlling damping-off caused by Rhizoctonia solani and charcoal rot caused by Macrophomina phasoliana on sunflower. Plant Pathol J 8:79–89CrossRefGoogle Scholar
  2. Abdellatif KF, Hamouda RA, El-Ansary MSM (2016) Green nanoparticles engineering on root-knot nematode infecting eggplant plants and their effect on plant DNA modification. Iran J Biotechnol 14:250–259PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abd-Elsalam KA (2013) Fungal genomics and biology nanoplatforms for plant pathogenic fungi management. Fungal Genomics Biol 2:e107Google Scholar
  4. Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing (ISBN 978-3-319-91161-8). https://www.springer.com/us/book/9783319911601
  5. Acharya S, Hill JP, Ariga K (2008) Soft Langmuir–Blodgett technique for hard nanomaterials. Adv Mater 21(29):2959–2981CrossRefGoogle Scholar
  6. Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, Burligton/London, UKGoogle Scholar
  7. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269PubMedCrossRefPubMedCentralGoogle Scholar
  8. Ali ME, Hashim U, Mustafa S, Chen Man YB, Islam KH (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 2012:103607Google Scholar
  9. Ali A, Zafar H, Zia M, Ul hap I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ando Y, Miyake K, Mizuno A, Korenaga A, Nakano M, Mano H (2010) Fabrication of nano stripe surface structure by multilayer film deposition combined with micropatterning. Nanotechnology 21(9):095304PubMedCrossRefPubMedCentralGoogle Scholar
  11. André Lévesque C (2001) Molecular methods for detection of plant pathogens-what is the future. Can J Plant Pathol 24:333–336CrossRefGoogle Scholar
  12. Anjali CH, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936PubMedCrossRefPubMedCentralGoogle Scholar
  13. Anwar Haq M, Collin MA, Brian Tomsett A, Jones MG (2003) Detection of Sclerotium cepivorum within onion plants using PCR primers. Physiol Mol Plant Pathol 62:185–189CrossRefGoogle Scholar
  14. Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9(19):2319–2340PubMedCrossRefPubMedCentralGoogle Scholar
  15. Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9:104–109CrossRefGoogle Scholar
  16. Ariga K, Lee MV, Mori T, Yu X-Y, Hill JP (2010) Two-dimensional nanoarchitectonics based on self-assembly. Adv Colloid Interf Sci 154:20–29CrossRefGoogle Scholar
  17. Ariga K, Li M, Richards GJ, Hill JP (2011) Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. J Nanosci Nanotechnol 11(1):1–13PubMedCrossRefPubMedCentralGoogle Scholar
  18. Arvind Bharani RS, Karthick Raja Namasivayam S, Shankar S (2014) Biocompatible chitosan nanoparticles incorporated pesticidal protein beauvericin (Csnp-Bv) preparation for the improved pesticidal activity against major groundnut defoliator Spodoptera Litura (Fab.) (Lepidoptera; Noctuidae). Int J Chem Tech Res 6:5007–5012Google Scholar
  19. Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC (2005) Quantum dots in bio-imaging: revolution by the small. Biochem Biophys Res Commun 329(4):1173–1177PubMedCrossRefPubMedCentralGoogle Scholar
  20. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003–6009PubMedPubMedCentralCrossRefGoogle Scholar
  21. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart:689419.  https://doi.org/10.1155/2014/689419CrossRefGoogle Scholar
  22. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612.  https://doi.org/10.1021/acs.langmuir.5b03081CrossRefGoogle Scholar
  23. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984
  24. Baghat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1984.  https://doi.org/10.1038/srep0129CrossRefGoogle Scholar
  25. Bansal P, Bubel K, Agarwal S, Greiner A (2012) Water-stable all-biodegradable microparticles in nanofibers by electrospinning of aqueous dispersions for biotechnical plant protection. Biomacromolecules 13(2):439–444. https://doi.org/10.1021/bm2014679PubMedCrossRefPubMedCentralGoogle Scholar
  26. Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural Polymer Drug Delivery Systems 33–93. https://doi.org/10.1007/978-3-319-41129-3_2CrossRefGoogle Scholar
  28. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
  29. Biswas A, Eilers H, Hidden F, Aktas OC, Kiran CVS (2006) Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix. Appl Phys Lett 88:103–113CrossRefGoogle Scholar
  30. Boonham N, Walsh K, Smith P, Madagan K, Graham I, Barker I (2003) Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J Virol Methods 108:181–187PubMedCrossRefPubMedCentralGoogle Scholar
  31. Boonham N, Glover R, Tomlinson J, Munford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363CrossRefGoogle Scholar
  32. Borei HA, Zl Samahy MFM, Galal OA, Thabet AF (2014) The efficiency of silica nanoparticles in control cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) in soybean under laboratory conditions. Glob J Agric Food Safety Sci 2:161–168Google Scholar
  33. Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396CrossRefGoogle Scholar
  34. Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4:185–191PubMedPubMedCentralCrossRefGoogle Scholar
  36. Buteler M, Sofie SW, Weaver DK, Driscoll D, Muretta J, Stadler T (2015) Development of nanoalu- mina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. Inter J Pest Manage 6:80–89Google Scholar
  37. Buhroo AA, Nisa G, Asrafuzzaman S, Prasad R, Rasheed R, Bhattacharyya A (2017) Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. J Plant Protect Res 57(2):194–200CrossRefGoogle Scholar
  38. Bystricka D, Lenz O, Mraz I, Dedic P, Sip M (2003) DNA microarray: parallel detection of potato viruses. Acta Virol 47:41–44PubMedPubMedCentralGoogle Scholar
  39. Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. Appl Mater Interfaces 7(18):9546–9553CrossRefGoogle Scholar
  40. Chakravarthy AK, Bhattacharyya A, Shashank PR, Epidi TT, Doddabasappa B, Mandal SK (2012) DNA-tagged nano gold: a new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). Afr J Biotechnol 11:9295–9301CrossRefGoogle Scholar
  41. Chang FP, Kuang LY, Huang CA, Jane WN, Hung Y, Hsing YIC, Mou CY (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1:5279–5287CrossRefGoogle Scholar
  42. Chariou PL, Steinmetz NF (2017) Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11(5):4719–4730PubMedCrossRefPubMedCentralGoogle Scholar
  43. Chartuprayoon N, Rheem Y, Chen W, Myung NV (2010) Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon. In: Proceedings of the 218th ECS meeting. Las Vegas, October 10–15, pp 2278Google Scholar
  44. Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9:34CrossRefGoogle Scholar
  45. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  46. Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manage Hortic Ecosyst 19(2):131–151Google Scholar
  47. Christenson LD, Foote RH (1960) Biology of fruit flies. Annu Rev Entomol 5:171–192CrossRefGoogle Scholar
  48. Christofoli M, Candida Costa EC, Bicalho KU, Cassia Domingues VD, Peixoto MF, Fernandes Alves CC, Araujo WL, Melo Cazal CD (2015) Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crop Prod 70:301–308CrossRefGoogle Scholar
  49. Cromwell WA, Yang J, Starr JL, Young KJ (2014) Nematicidal effects of silver nanoparticles on Root-knot nematode in Burmudagrass. J Nematol 46(3):261–266PubMedPubMedCentralGoogle Scholar
  50. Czarnobai De Jorge B, Bisotto-de-Oliviera R, Pereira CN, Sant’Ana J (2017) Novel nanoscale pheromone dispenser for more accurate evaluation of Grapholita molesta (Lepidoptera: Tortricidae) attract-and-kill strategies in the laboratory. Pest Manag Sci 73(9):1921–1926PubMedCrossRefPubMedCentralGoogle Scholar
  51. Dean R, van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430PubMedCrossRefPubMedCentralGoogle Scholar
  52. Debnath N, Das S, Seth D (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105CrossRefGoogle Scholar
  53. Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol 221:252–256CrossRefGoogle Scholar
  54. Deyoung Z, Willingmann P, Heinze C, Adam G, Pfunder M, Frey B, Frey JE (2005) Differentiation of cucumber mosaic virus isolates by hybridization to oligonucleotides in a microarray format. J Virol Methods 123:101–108CrossRefGoogle Scholar
  55. Duhan JS, Kumar R, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  56. El Bendary HM, El Helaly AA (2013) First record nanotechnology in agricultural: silica nano- particles a potential new insecticide for pest control. App Sci Rep 4(3):241–246Google Scholar
  57. Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Coll Surfac A: Physicochem Eng Asp 372:66–72CrossRefGoogle Scholar
  58. El-Helaly AA, El-Bendary HM, Abdel-Wahab AS, El-Sheikh MAK, Elnagar S (2016) The silica-nano particles treatment of squash foliage and survival and development of Spodoptera littoralis (Bosid.) larvae. J Entomol Zool Stu 4(1):175–180Google Scholar
  59. Estelrich J, Escribano E, Queralt J, Busquets MA (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16(4):8070–8101PubMedPubMedCentralCrossRefGoogle Scholar
  60. Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci 100(11):6297–6301PubMedCrossRefPubMedCentralGoogle Scholar
  61. Forim MR, Costa ES, Fernandes da Silva MFG, Fernandes JB, Mondego JM, Boiça Junior AL (2013) Development of a new method to prepare nano−/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61(38):9131–9139PubMedCrossRefPubMedCentralGoogle Scholar
  62. Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898PubMedCrossRefPubMedCentralGoogle Scholar
  63. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196PubMedCrossRefPubMedCentralGoogle Scholar
  64. Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chem Int Ed 43(1):30–45CrossRefGoogle Scholar
  65. Gopal M, Kumar R, Goswami M (2012) Nano pesticides -a recent approach for pest control. J Plant Prot Sci 4(2):1–7Google Scholar
  66. Goswami BK (1993) Effect of different soil amendments with neem cake on root knot nematode and soil mycoflora in cowpea rhizosphere. Indian J Plant Prot 21(1):87–89Google Scholar
  67. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257CrossRefGoogle Scholar
  68. Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pest Biochem Physiol 92:83–91CrossRefGoogle Scholar
  69. Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing Switzerland AG 247–266Google Scholar
  70. Guzman MG, Dille J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their anti bacterial activity. Int J Chem Biomol Eng 2(3):104–111Google Scholar
  71. Hua KH, Wang HC, Chung RS, Hsu JC (2015) Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. J Pestic Sci 40:208–213CrossRefGoogle Scholar
  72. Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomed 2:681–693CrossRefGoogle Scholar
  73. Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd. Singapore 305–317Google Scholar
  74. Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kmaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194PubMedCrossRefPubMedCentralGoogle Scholar
  75. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A: Mol Biomol Spectrosc 90:78–84CrossRefGoogle Scholar
  76. Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius J, Wesemael WML et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kah M, Hofmann T (2014) Nanopesticides research: current trends and future priorities. Environ Int 63:224–235.  https://doi.org/10.1016/j.envint.2013.11.015CrossRefGoogle Scholar
  78. Kashyap PL, Rai P, Sharma S, Chakdar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. In: Ranjan S, Dasgupta N, Lichfouste E (eds) Nanoscience in food and agriculture. Sustainable agriculture reviews 21, vol 2. Springer, ChamGoogle Scholar
  79. Khan MN, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231CrossRefGoogle Scholar
  80. Khater M, Escosura-Muñiz A, MerkoçI A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86PubMedCrossRefPubMedCentralGoogle Scholar
  81. Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kraemer S, Fuierer RR, Gorman CB (2009) Scanning probe lithography using self-assembled monolayers. Chem Rev 103:4367–4418CrossRefGoogle Scholar
  83. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658CrossRefGoogle Scholar
  84. Kucharska K, Tumialis D, Pezowicz E, Skrzecz I (2011) The effect of gold nanoparticles on the mortality and pathogenicity of entomopathogenic nematodes from Owinema biopreparation. Insect pathogens and entomopathogenic nematodes IOBC/wprs Bulletin vol. 66, str. 347–349Google Scholar
  85. Lacava PT, Araujo WL, Azevedo JL, Hartung JS (2006) Rapid, Speicific and quantitative assays for detection of the endophytic bacterium methylobacterium mesophilicum in plants. J Microbial Methods 65:535–541CrossRefGoogle Scholar
  86. Lee KB, Lim JH, Mirkin CA (2003) Protein nanostructures formed via direct-write dip-pen nanolithography. J Am Chem Soc 125:5588–5589PubMedCrossRefPubMedCentralGoogle Scholar
  87. Li W, Hartung JS, Levy L (2006) Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J Microbiol Methods 66:104–115PubMedCrossRefPubMedCentralGoogle Scholar
  88. Li L, Rafael RG, Gershgoren E, Hwang H, Fourkas JT (2009) Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science 324:910–913PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lim D, Roh J-Y, Eom H-J, Hyun JW, Choi J (2012) Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592PubMedCrossRefPubMedCentralGoogle Scholar
  90. López MM, Bertolini E, Olmos A, Caruso P, Gorris MT, Llop P, Penyalver R, Cambra M (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiol 6:233–243PubMedCrossRefPubMedCentralGoogle Scholar
  91. Louder JK (2015) Nanotechnology in agriculture: interactions between nanomaterials and cotton agrochemicals. Ph.D. Thesis, Texas Tech University, Texas, USAGoogle Scholar
  92. Louws FJ, Rademaker JLW, de Bruijn FJ (1999) The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection and disease diagnosis. Annu Rev Phytopathol 37:81–125PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mailly D (2009) Nanofabrication techniques. Eur Phys J Special Topics 172:333–342CrossRefGoogle Scholar
  94. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow MAX, Verdier V, Beer SV, Machado MA, Toth IAN (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629PubMedCrossRefPubMedCentralGoogle Scholar
  95. Marrian CRK, Tennant DM (2009) Nanofabrication. J Vac Sci Technol A 21:S207–S215CrossRefGoogle Scholar
  96. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35:1–25CrossRefGoogle Scholar
  97. McSorley R, Duncan LW (1995) Economic thresholds and nematode management. Adv Plant Pathol 11:147–171CrossRefGoogle Scholar
  98. Miller SA, Beed FD, Harmon CL (2009) Plant disease diagnostic capabilities and networks. Annu Rev Phytopathol 47:15–38PubMedCrossRefPubMedCentralGoogle Scholar
  99. Mishra S, Singh HB (2016) Preparation of biomediated metal nanoparticles. Indian Patent Filed 201611003248Google Scholar
  100. Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Dinesh D, Suresh U, Roni M, Higuchi A, Nicoletti M, Benelli G (2016) Eco-friendly drugs from the marine environment: sponge weed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res Int 23(16):16671–16685PubMedCrossRefPubMedCentralGoogle Scholar
  101. Nassar AMK (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognit. Asian J Nematol 5:12–19CrossRefGoogle Scholar
  102. Nicol JM, Rivoal R (2008) Global knowledge and its application for the integrated control and management of nematodes on wheat. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes, vol 2. Springer, Dordrecht, The Netherlands, pp 243–287Google Scholar
  103. Nitai D (2012) Entomotoxic surface functionalized nanosilica: design, efficacy, molecular mechanism of action and value addition studies. PhD. School of Biotechnology & Biological Science. West Bengal University of Technology, IndiaGoogle Scholar
  104. Nolasco G, Sequeira Z, Soares C, Mansinho A, Bailey AM, Niblett CL (2002) Asymmetric PCR ELISA: increased sensitivity and reduced costs for the detection of plant viruses. Eur J Plant Pathol 108(4):293–298CrossRefGoogle Scholar
  105. Oliveira JL, Campos EV, Goncalves CM, Pasquoto T, de Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63:422–432PubMedCrossRefPubMedCentralGoogle Scholar
  106. Otles S, Yalcin B (2010) Nano-biosensors as new tool for detection of food quality and safety. Log Forum 6:67–70Google Scholar
  107. Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127CrossRefGoogle Scholar
  108. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza Y, Bilan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotech 4:669–673CrossRefGoogle Scholar
  109. Perrault SD, Chan WCW (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Nat Acad Sci 107:11194–11199PubMedCrossRefPubMedCentralGoogle Scholar
  110. Prasad R, Bagde US, Varma A (2012) An overview of intellectual property rights in relation to agricultural biotechnology. Afr J Biotechnol 11(73):13746–13752Google Scholar
  111. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  112. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363Google Scholar
  113. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014CrossRefPubMedPubMedCentralGoogle Scholar
  114. Prasad R, Kumar M, Kumar V (2017b) Nanotechnology an agricultural paradigm. Springer, Singapore, p 371Google Scholar
  115. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017c) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., pp 253–269Google Scholar
  116. Prasanna BM (2007) Nanotechnology in agriculture. ICAR National Fellow, Division of Genetics, I.A.R.I., New Delhi, India, pp 111–118Google Scholar
  117. Predicala B (2009) Nanotechnology: potential for agriculture. In: Proceedings of the 78th annual southern states communication association national convention, April 2–6, 2008, Savannah, GA, USA, pp 123–134Google Scholar
  118. Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor. J Plant Pathol 94:525–534Google Scholar
  119. Rogers JA, Lee HH (2008) Unconventional nanopatterning techniques and applications. Wiley, WeinheimCrossRefGoogle Scholar
  120. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu D-Y, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940PubMedCrossRefPubMedCentralGoogle Scholar
  121. Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72:590–594CrossRefGoogle Scholar
  122. Ruiz-Ruiz S, Moreno P, Guerri J, Ambros S (2009) Discrimination between mild and severe Citrus tristeza virus isolates with a rapid and highly specific real-time reverse transcription-polymerase chain reaction method using TaqMan LNA probes. Phytopathology 99(3):307–315PubMedCrossRefPubMedCentralGoogle Scholar
  123. Sabbour MM, Abd El-Aziz SE (2015) Efficacy of nano-diatomaceous earth against red flour beetle, Tribolium castaneum and confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae) under laboratory and storage conditions. Bull Env Pharmacol Life Sci 4(7):54–59Google Scholar
  124. Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515CrossRefGoogle Scholar
  125. Sahab AF, Waly AL, Sabbour MM, Nawar LS (2015) Synthesis, antifungal and insecticidal potential of Chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed borne fungi and insects of soybean. Int J Chem Tech Res 8(2):589–598Google Scholar
  126. Sakakibara K, Hill JP, Ariga K (2011) Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. Small 7(10):1288–1308PubMedCrossRefPubMedCentralGoogle Scholar
  127. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017a) Agricultural nanotechnology: concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore 1–17Google Scholar
  128. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, pp 73–97Google Scholar
  129. Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5:32–39Google Scholar
  130. Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, Inc, Hyattsville, pp 7–14Google Scholar
  131. Savary S, Willocquet L (2014) Simulation modeling in botanical epidemiology and crop loss analysis. Plant Health Instructor (Online), 147, https://doi.org/10.1094/PHI-A-2014-0314-01
  132. Schäffer E, Thurn-Albrecht T, Russell TP, Sakakibara K, Hill JP, Ariga K (2000) Electrically induced structure formation and pattern transfer. Let Nat 403:874–877CrossRefGoogle Scholar
  133. Schmid GM, Miller M, Brooks C, Khusnatdinov N, La Brake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang XM (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B 27:573CrossRefGoogle Scholar
  134. Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saundners K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954PubMedCrossRefPubMedCentralGoogle Scholar
  135. Schwenkbier L, Pollok S, Konig S, Urban M et al (2015) Towards on-site testing of phytophtora species. Anal Methods 7:211–217CrossRefGoogle Scholar
  136. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96CrossRefGoogle Scholar
  137. Sharma H, Dhirta B, Shirkot P (2017) Evaluation of biogenic iron nano formulations to control Meloidogyne incognita in okra. Int J Chem Stud 5(5):278–284Google Scholar
  138. Sheykhbaglou R, Sedghi M, Tajbakhsh Shishevan M, Seyed Sharifi R (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2(2):112–113CrossRefGoogle Scholar
  139. Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13:1763–1786PubMedCrossRefPubMedCentralGoogle Scholar
  140. Smith JC, Lee KB, Wang Q, Finn MG, Johnson JE, Mrksich M, Mirkin CA (2003) Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett 3(7):883–886CrossRefGoogle Scholar
  141. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182PubMedCrossRefPubMedCentralGoogle Scholar
  142. Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66:577–579PubMedPubMedCentralGoogle Scholar
  143. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116PubMedCrossRefPubMedCentralGoogle Scholar
  144. Stuchinskava T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831CrossRefGoogle Scholar
  145. Taha EH (2016) Nematicidal effects of silver nanoparticles on Root-knot nematodes (Meloidogyne incognita) in laboratory and screenhouse. J Plant Prot Path, Mansoura Univ 7(5):333–337Google Scholar
  146. Taha EH, Abo-Shady NM (2016) Effect of silver nanoparticles on the mortality pathogenicity and reproductivity of entomopathogenic nematodes. Int J Zool Res 12:47–50CrossRefGoogle Scholar
  147. Tang YB, Xing D, Zhu DB, Liu JF (2007) An improved electrochemiluminescence polymerase chain reaction method for highly sensitive detection of plant viruses. Anal Chim Acta 582(2):275–280PubMedCrossRefPubMedCentralGoogle Scholar
  148. Teixeira DC, Danet JL, Evellard S, Martins EC, de Jesus WC, Yamamoto PT, Lopez SA, Bassanezi RB, Ayres AJ, Saillard C, Nad A, Bové JM (2005) Citrus huanglongbing in São Paulo State, Brazil: PCR detection of the ‘Candidatus’ Liberibacter species associated with the disease. Mol Cell Probes 19(3):173–179CrossRefGoogle Scholar
  149. Thompson DT (2007) Using gold nanoparticles for catalysis. Nano Today 2(4):40–43CrossRefGoogle Scholar
  150. Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M (2013) Detection of pseudomonas syringae pathovars by thiol-linked DNA–gold nanoparticle probes. Sens Actuators B- Chem 181:644–651CrossRefGoogle Scholar
  151. Velayuthan K, Rahman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA, Elango G (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111(6):2329–2337CrossRefGoogle Scholar
  152. Waeyenberge L, Viaene N, Moens M (2009) Species-specific duplex PCR for the detection of Pratylenchus penetrans. Nematology 11:847–857CrossRefGoogle Scholar
  153. Wang L, Li PC (2007) Flexible microarray construction and fast DNA hybridization conducted on a microfluidic chip for greenhouse plant fungal pathogen detection. J Agri Food Chem 55(26):10509–10516CrossRefGoogle Scholar
  154. Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence adequate material characterization? Toxicol Sci 101:183–185PubMedCrossRefPubMedCentralGoogle Scholar
  155. Wee EJH, Ngo TH, Trau M (2015) Colorimetric detection of both total genomic and loci-specific DNA methylation from limited DNA inputs. Clin Epigenetics.  https://doi.org/10.1186/s13148-015-0100-6
  156. Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk HLGHM (2008) Nanomaterials in soils. Geoderma 146:291–302CrossRefGoogle Scholar
  157. Yaman M, Khudiyev T, Ozgur E, Kanik M, Aktas O, Ozgur EO, Deniz H, Korkut E, Bayindir M (2011) Arrays of indefinitely long uniform nanowires and nanotubes. Nat Mater 10:494–591PubMedCrossRefPubMedCentralGoogle Scholar
  158. Yan FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agri Food Chem 57(21):10156–10163. https://doi.org/10.1021/jf9023118PubMedCrossRefPubMedCentralGoogle Scholar
  159. Yang FL, Li XG, Zhu F, Lei CH (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162PubMedCrossRefPubMedCentralGoogle Scholar
  160. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Multi-Funct Mater Struct II Parts 1 and 2:79–82:513–516Google Scholar
  161. Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102PubMedCrossRefPubMedCentralGoogle Scholar
  162. Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4:1871–1880PubMedCrossRefPubMedCentralGoogle Scholar
  163. Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95–102Google Scholar
  164. Zaiee M, Moharramipour S, Mohsenifar A (2014) MA-Chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J Pest Sci 87:691–699CrossRefGoogle Scholar
  165. Zhang L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91CrossRefGoogle Scholar
  166. Zhao RY (2014) design synthesis and property of azo-polymer with photo-responsive function. Ph.D. Thesis, Jilin University, Jilin, ChinaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fouad Mokrini
    • 1
  • Rachid Bouharroud
    • 1
  1. 1.Research Unit of Integrated Crop Production, Regional Center of Agronomy Research, INRA-CRRAAgadirMorocco

Personalised recommendations