Introduction to Nanoscience, Nanomaterials, Nanocomposite, Nanopolymer, and Engineering Smart Materials

  • Yeşeren Saylan
  • Handan Yavuz
  • Celal Ülger
  • Adil Denizli
  • Necdet SağlamEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Biophysical properties of nanoscale objects like high surface area, high diffusivity to cells, efficient uptake, high capacity to be used in biological interfaces, etc. make them very useful tools. Bionanotechnology or nanobiotechnology overlaps nanotechnology in terms of generation of bio-inspired hybrid materials derived from chemical or biological synthesis to fabricate functional macromolecules. Microbial cells are ideal producers for such structures because of their controlled culturability, easily genetic manipulability, and wide diversity.

Biotechnology and molecular biology applications of nanotechnology are widely accepted techniques. DNA extraction and isolation from ancient bone samples, degraded body parts, etc. is still quite difficult. In molecular biology, nanoparticle applications have become an increasingly popular technique for the separation of biomolecules namely proteins, DNA and RNA, for genomics, proteomics, or metabolomics.

In this text, some latest applications of the nanomaterials such as nanotubes, nanoparticles, nanosensors, and so on which use microbial technology and the application of nanotechnology in biotechnology and molecular biology are given.


Nanomaterials Nanocomposite Nanopolymer Nanotubes Nanosensors Liposomes 


  1. Ansari N, Pandya A, Sutariya P, Lodha A (2018) Forensic nanotechnology in forensic genetics. Peer Rev J Foren Gen Sci 1(1):1–4Google Scholar
  2. Ash C, Foley J, Pennisi E (2008) Lost in microbial space. Am Assoc Adv Sci 320:1027Google Scholar
  3. Bhat JS (2005) Concerns of new technology based industries-the case of nanotechnology. Technovation 25(5):457–462CrossRefGoogle Scholar
  4. Bonoiu AC, Mahajan SD, Ding H, Roy I, Yong KT, Kumar R, Hu R, Bergey EJ, Schwartz SA, Prasad PN (2009) Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci U S A 106(14):5546–5550PubMedPubMedCentralCrossRefGoogle Scholar
  5. Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheimvandillen PME, Vandernoordaa J (1990) Rapid and Simple method for purification of nucleic-acids. J Clin Microbiol 28(3):495–503PubMedPubMedCentralGoogle Scholar
  6. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62PubMedCrossRefGoogle Scholar
  7. Burns A, Ow H, Wiesner U (2006) Fluorescent core–shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042PubMedCrossRefGoogle Scholar
  8. Colpitis C, Kiani A (2016) Synthesis of bioactive three-dimensional silicon-oxide nanofibrous structures on the silicon substrate for bionic devices’ fabrication. Nanomater Nanotechnol 6(8):1–7Google Scholar
  9. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45(5):1992–1998PubMedCrossRefGoogle Scholar
  10. Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58(14):1456–1459PubMedCrossRefGoogle Scholar
  11. Fiorino D (2010) Voluntary initiatives, regulation, and nanotechnology oversight: charting a path, project on emerging nanotechnologies. Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, Washington, D.C.Google Scholar
  12. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gong R, Li SY (2014) Extraction of human genomic DNA from whole blood using a magnetic microsphere method. Int J Nanomedicine 9:3781–3788PubMedPubMedCentralCrossRefGoogle Scholar
  14. Grabow WW, Jaeger L (2014) RNA self-assembly and RNA nanotechnology. Acc Chem Res 47(6):1871–1880PubMedCrossRefGoogle Scholar
  15. Guo PX (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5(12):833–842PubMedPubMedCentralCrossRefGoogle Scholar
  16. Guo PX, Haque F, Hallahan B, Reif R, Li H (2012) Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 22(4):226–245PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hassan RY, Hassan HN, Abdel-Aziz MS, Khaled E (2014) Nanomaterials-based microbial sensor for direct electrochemical detection of Streptomyces spp. Sensors Actuators B Chem 203:848–853CrossRefGoogle Scholar
  18. Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466:1047–1059PubMedCrossRefGoogle Scholar
  19. Jackson DA, Juranek S, Lipps HJ (2006) Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 14(5):613–626PubMedCrossRefGoogle Scholar
  20. Jain KK (2008) Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 17(2):89–101PubMedCrossRefGoogle Scholar
  21. Kang HM, DeLong R, Fisher MH, Juliano RL (2005) Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res 22(12):2099–2106PubMedCrossRefGoogle Scholar
  22. Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43(7):2648–2653PubMedCrossRefGoogle Scholar
  23. Keles E, Song Y, Du D, Dong WJ, Lin YH (2016) Recent progress in nanomaterials for gene delivery applications. Biomater Sci-UK 4(9):1291–1309CrossRefGoogle Scholar
  24. Kirschling TL, Golas PL, Unrine JM, Matyjaszewski K, Gregory KB, Lowry GV, Tilton RD (2011) Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ Sci Technol 45(12):5253–5259PubMedCrossRefGoogle Scholar
  25. Konopka A (2009) What is microbial community ecology? ISME J 3(11):1223–1230PubMedCrossRefGoogle Scholar
  26. Lian W, Huang J, Yu J, Zhang X, Lin Q, He X, Xing X, Liu S (2012) A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline. Food Control 26(2):620–627CrossRefGoogle Scholar
  27. Lodha A, Pandya A, Shukla RK (2016) Nanotechnology: an applied and robust approach for forensic investigation. For Res Crim Int J 2(1):1–4Google Scholar
  28. Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17(6):580–588PubMedCrossRefGoogle Scholar
  29. Mohanty A, Wu Y, Cao B (2014) Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems. Appl Microbiol Biotechnol 98(20):8457–8468PubMedCrossRefGoogle Scholar
  30. Murty B, Shankar P, Raj B, Rath B, Murday J (2013) Textbook of nanoscience and nanotechnology. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  31. Novobrantseva TI, Borodovsky A, Wong J, Klebanov B, Zafari M, Yucius K, Querbes W, Ge P, Ruda VM, Milstein S, Speciner L, Duncan R, Barros S, Basha G, Cullis P, Akinc A, Donahoe JS, Narayanannair Jayaprakash K, Jayaraman M, Bogorad RL, Love K, Whitehead K, Levins C, Manoharan M, Swirski FK, Weissleder R, Langer R, Anderson DG, de Fougerolles A, Nahrendorf M, Koteliansky V (2012) Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol Ther Nucleic Acids 1:1–13CrossRefGoogle Scholar
  32. Pardridge WM (2008) Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem 19(7):1327–1338PubMedCrossRefGoogle Scholar
  33. Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319(5863):627–630PubMedPubMedCentralCrossRefGoogle Scholar
  34. Porter AL, Youtie J (2009) Where does nanotechnology belong in the map of science? Nat Nanotechnol 4(9):534–536PubMedCrossRefGoogle Scholar
  35. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  36. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. Scholar
  37. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014.
  38. Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: an agriculture paradigm. Springer Nature, Singapore. isbn:978-981-10-4573-8Google Scholar
  39. Prasad R, Kumar V, Kumar M (2017c) Nanotechnology: food and environmental paradigm. Springer Nature, Singapore. isbn:978-981-10-4678-0Google Scholar
  40. Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11(7):1811–1815CrossRefGoogle Scholar
  41. Saiyed ZM, Ramchand CN, Telang SD (2008) Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support. J Phys Condens Matter 20(20):1–5CrossRefGoogle Scholar
  42. Sakaguchi N, Kojima C, Harada A, Koiwai K, Shimizu K, Emi N, Kono K (2006) Enhancement of transfection activity of lipoplexes by complexation with transferrin-bearing fusogenic polymer-modified liposomes. Int J Pharm 325(1–2):186–190PubMedCrossRefGoogle Scholar
  43. Saylan Y, Uzun L, Denizli A (2014) Alanine functionalized magnetic nanoparticles for reversible amyloglucosidase immobilization. Ind Eng Chem Res 54(1):454–461CrossRefGoogle Scholar
  44. Saylan Y, Yılmaz F, Derazshamshir A, Yılmaz E, Denizli A (2017) Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor. J Mol Recognit 30(9):e2631CrossRefGoogle Scholar
  45. Sebastianelli A, Sen T, Bruce IJ (2008) Extraction of DNA from soil using nanoparticles by magnetic bioseparation. Lett Appl Microbiol 46(4):488–491PubMedCrossRefGoogle Scholar
  46. Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87PubMedPubMedCentralCrossRefGoogle Scholar
  47. Šefčovičová J, Tkac J (2015) Application of nanomaterials in microbial-cell biosensor constructions. Chem Pap 69(1):42–53Google Scholar
  48. Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sust Energ Rev 13(9):2373–2384CrossRefGoogle Scholar
  49. Shan Z, Zhou Z, Chen H, Zhang Z, Zhou Y, Wen A, Oakes KD, Servos MR (2012) PCR-ready human DNA extraction from urine samples using magnetic nanoparticles. J Chromatogr B 881-882:63–68CrossRefGoogle Scholar
  50. Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291–305PubMedPubMedCentralCrossRefGoogle Scholar
  51. Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. Scholar
  52. Suman, Prasad R, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191Google Scholar
  53. Sun NF, Liu ZA, Huang WB, Tian AL, Hu SY (2014) The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hemat 89(3):352–357CrossRefGoogle Scholar
  54. Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463–474PubMedCrossRefGoogle Scholar
  55. Valentini L, Bon SB, Signetti S, Tripathi M, Iacob E, Pugno NM (2016) Fermentation based carbon nanotube multifunctional bionic composites. Sci Rep-UK 6:27031 (1-9)Google Scholar
  56. Valentini L, Bittolo Bon S, Pugno NM (2017) Graphene and carbon nanotube auxetic rubber bionic composites with negative variation of the electrical resistance and comparison with their nonbionic counterparts. Adv Funct Mater 27(24):1606526 (1-8)CrossRefGoogle Scholar
  57. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212CrossRefPubMedPubMedCentralGoogle Scholar
  58. Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133(7):835–845PubMedCrossRefGoogle Scholar
  59. Wong MH, Giraldo JP, Kwak SY, Koman VB, Sinclair R, Lew TTS, Bisker G, Liu P, Strano MS (2017) Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat Mater 16(2):264–272PubMedCrossRefGoogle Scholar
  60. Yi L, Huang Y, Wu T, Wu J (2013) A magnetic nanoparticles-based method for DNA extraction from the saliva of stroke patients. Neural Regen Res 8(32):3036–3046PubMedPubMedCentralGoogle Scholar
  61. Zamaleeva AI, Sharipova IR, Shamagsumova RV, Ivanov AN, Evtugyn GA, Ishmuchametova DG, Fakhrullin RF (2011) A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Anal Methods-UK 3(3):509–513CrossRefGoogle Scholar
  62. Zhang Y, Li H, Sun J, Gao J, Liu W, Li B, Guo Y, Chen J (2010) DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int J Pharm 390(2):198–207PubMedCrossRefGoogle Scholar
  63. Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu C (2011) A graphene modified anode to improve the performance of microbial fuel cells. J Power Sources 196(13):5402–5407CrossRefGoogle Scholar
  64. Zhou ZW, Kadarn US, Irudayaraj J (2013) One-stop genomic DNA extraction by salicylic acid-coated magnetic nanoparticles. Anal Biochem 442(2):249–252PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yeşeren Saylan
    • 1
  • Handan Yavuz
    • 1
  • Celal Ülger
    • 2
  • Adil Denizli
    • 1
  • Necdet Sağlam
    • 3
    Email author
  1. 1.Department of Chemistry, Biochemistry DivisionHacettepe UniversityAnkaraTurkey
  2. 2.Department of Biology, Molecular Biology DivisionAdnan Menderes UniversityAydınTurkey
  3. 3.Nanotechnology and Nanomedicine DivisionHacettepe UniversityAnkaraTurkey

Personalised recommendations