Lobular Breast Lesions

  • Megan L. TroxellEmail author
  • Yun An Chen
  • Jing Yu
  • Debra M. Ikeda
  • Kimberly H. Allison
Part of the Practical Anatomic Pathology book series (PAP)


Invasive lobular carcinoma is the most common “special type” of breast carcinoma, accounting for 5–15% of invasive carcinomas. Lobular carcinomas have characteristic cytologic features and dyscohesive architecture, with one of the molecular hallmarks being loss of the cell adhesion molecule E-cadherin in atypical lobular hyperplasia, lobular carcinoma in situ, and invasive lobular carcinoma. In its classic form, invasive lobular carcinoma is usually estrogen receptor+/Her2- and shares other molecular alterations with luminal A/low-grade carcinomas. We present classic and variant forms of invasive and in situ lobular neoplasia, with clinical and radiologic correlation, and updated immunohistochemical and molecular features.


Invasive lobular carcinoma Atypical lobular hyperplasia Lobular carcinoma in situ E-cadherin Pleomorphic lobular carcinoma 



The authors would like to thank Norm Cyr for providing expert assistance with figures.


  1. 1.
    Lakhani SR, Rakha E, Simpson PT. Invasive lobular carcinoma. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. WHO classification of Tumours of the breast. Lyon: IARC; 2012. p. 40–5.Google Scholar
  2. 2.
    Hoda SA, Brogi E, Koerner FC, Rosen PP. Chapter 32, Invasive lobular carcinoma. In: Rosen’s breast pathology. 4th ed. Philadelphia: Wolters Kluwer; 2014. p. 855–92.Google Scholar
  3. 3.
    Eheman CR, Shaw KM, Ryerson AB, Miller JW, Ajani UA, White MC. The changing incidence of in situ and invasive ductal and lobular breast carcinomas: United States, 1999–2004. Cancer Epidemiol Biomark Prev. 2009;18(6):1763–9.Google Scholar
  4. 4.
    Dossus L, Benusiglio PR. Lobular breast cancer: incidence and genetic and non-genetic risk factors. Breast Cancer Res. 2015;17:37.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Brem RF, Ioffe M, Rapelyea JA, Yost KG, Weigert JM, Bertrand ML, et al. Invasive lobular carcinoma: detection with mammography, sonography, MRI, and breast-specific gamma imaging. AJR Am J Roentgenol. 2009;192(2):379–83.PubMedGoogle Scholar
  6. 6.
    Savaridas SL, Bristow GD, Cox J. Invasive lobular Cancer of the breast: a pictorial essay of imaging findings on mammography, sonography, and magnetic resonance imaging. Can Assoc Radiol J. 2016;67(3):263–76.PubMedGoogle Scholar
  7. 7.
    Jacobs C, Clemons M, Addison C, Robertson S, Arnaout A. Issues affecting the loco-regional and systemic Management of Patients with invasive lobular carcinoma of the breast. Breast J. 2016;22(1):45–53.PubMedGoogle Scholar
  8. 8.
    Chamming’s F, Kao E, Aldis A, Ferré R, Omeroglu A, Reinhold C, et al. Imaging features and conspicuity of invasive lobular carcinomas on digital breast tomosynthesis. Br J Radiol. 2017;90(1073):20170128.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Christgen M, Steinemann D, Kühnle E, Länger F, Gluz O, Harbeck N, et al. Lobular breast cancer: clinical, molecular and morphological characteristics. Pathol Res Pract. 2016;212(7):583–97.PubMedGoogle Scholar
  10. 10.
    Purushotham A, Pinder S, Cariati M, Harries M, Goldhirsch A. Neoadjuvant chemotherapy: not the best option in estrogen receptor-positive, HER2-negative, invasive classical lobular carcinoma of the breast? J Clin Oncol. 2010;28(22):3552–4.PubMedGoogle Scholar
  11. 11.
    Lester SC, Connolly JL, Amin MB. College of American Pathologists protocol for the reporting of ductal carcinoma in situ. Arch Pathol Lab Med. 2009;133(1):13–4.PubMedGoogle Scholar
  12. 12.
    Fitzgibbons PL, Bose S, Chen Y-Y, Connolly JL, de Baca ME, Edgerton M, et al. Protocol for the examination of specimens from patients with ductal carcinoma In Situ (DCIS) of the Breast. College of American Pathologists Cancer Protocol Template. Accessed 17 Feb 2018.
  13. 13.
    Grin A, Horne G, Ennis M, O’Malley FP. Measuring extent of ductal carcinoma in situ in breast excision specimens: a comparison of 4 methods. Arch Pathol Lab Med. 2009;133(1):31–7.PubMedGoogle Scholar
  14. 14.
    Dabbs DJ, Schnitt SJ, Geyer FC, Weigelt B, Baehner FL, Decker T, et al. Lobular neoplasia of the breast revisited with emphasis on the role of E-cadherin immunohistochemistry. Am J Surg Pathol. 2013;37(7):e1–11.PubMedGoogle Scholar
  15. 15.
    McCart Reed AE, Kutasovic JR, Lakhani SR, Simpson PT. Invasive lobular carcinoma of the breast: morphology, biomarkers and 'omics. Breast Cancer Res. 2015;17:12.PubMedGoogle Scholar
  16. 16.
    Schnitt SJ, Collins L. Biopsy interpretation of the breast. 3rd ed. Philadelphia: Wolters Kluwer; 2018. p. 315–26.Google Scholar
  17. 17.
    Haagensen CD, Lane N, Lattes R, Bodian C. Lobular neoplasia (so-called lobular carcinoma in situ) of the breast. Cancer. 1978;42(2):737–69.PubMedGoogle Scholar
  18. 18.
    Brogi E, Murray MP, Corben AD. Lobular carcinoma, not only a classic. Breast J. 2010;16(Suppl 1):S10–4.PubMedGoogle Scholar
  19. 19.
    Schnitt SJ, Collins L. Chapter 10, invasive breast cancer: invasive lobular carcinoma. In: Biopsy interpretation of the breast. 3rd ed. Philadelphia: Wolters Kluwer; 2018. p. 315–26.Google Scholar
  20. 20.
    Weidner N, Semple JP. Pleomorphic variant of invasive lobular carcinoma of the breast. Hum Pathol. 1992;23(10):1167–71.PubMedGoogle Scholar
  21. 21.
    Iorfida M, Maiorano E, Orvieto E, Maisonneuve P, Bottiglieri L, Rotmensz N, et al. Invasive lobular breast cancer: subtypes and outcome. Breast Cancer Res Treat. 2012;133(2):713–23.PubMedGoogle Scholar
  22. 22.
    Monhollen L, Morrison C, Ademuyiwa FO, Chandrasekhar R, Khoury T. Pleomorphic lobular carcinoma: a distinctive clinical and molecular breast cancer type. Histopathology. 2012;61(3):365–77.PubMedGoogle Scholar
  23. 23.
    Tan PH, Harada O, Thike AA, Tse GM. Histiocytoid breast carcinoma: an enigmatic lobular entity. J Clin Pathol. 2011;64(8):654–9.PubMedGoogle Scholar
  24. 24.
    Costarelli L, Campagna D, Ascarelli A, Cavaliere F, Colavito MH, Ponzani T, et al. Pleomorphic lobular carcinoma: is it more similar to a classic lobular cancer or to a high-grade ductal cancer? Breast Cancer (Dove Med Press). 2017;9:581–6.Google Scholar
  25. 25.
    Lien HC, Chen YL, Juang YL, Jeng YM. Frequent alterations of HER2 through mutation, amplification, or overexpression in pleomorphic lobular carcinoma of the breast. Breast Cancer Res Treat. 2015;150(2):447–55.PubMedGoogle Scholar
  26. 26.
    Simpson PT, Reis-Filho JS, Lambros MB, Jones C, Steele D, Mackay A, et al. Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol. 2008;215(3):231–44.PubMedGoogle Scholar
  27. 27.
    Yoder BJ, Wilkinson EJ, Massoll NA. Molecular and morphologic distinctions between infiltrating ductal and lobular carcinoma of the breast. Breast J. 2007;13(2):172–9.PubMedGoogle Scholar
  28. 28.
    Dieci MV, Smutná V, Scott V, Yin G, Xu R, Vielh P, et al. Whole exome sequencing of rare aggressive breast cancer histologies. Breast Cancer Res Treat. 2016;156(1):21–32.PubMedGoogle Scholar
  29. 29.
    Ellis IO, Simpson JF. Grading. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. WHO classification of Tumours of the breast. Lyon: IARC; 2012. p. 19–20.Google Scholar
  30. 30.
    Lester S, Weaver D, Morrow M. Staging. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. WHO classification of Tumours of the breast. Lyon: IARC; 2012. p. 20–2.Google Scholar
  31. 31.
    Hortobagyi GN, Connolly JL, D’Orsi CJ, Edge SB, Mittendorf ES, Rugo HA, et al. Breast. In: American joint committee on Cancer, AJCC Cancer staging manual. 8th ed. Chicago: Springer; 2017. p. 589–628.Google Scholar
  32. 32.
    Gamallo C, Palacios J, Suarez A, Pizarro A, Navarro P, Quintanilla M, et al. Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma. Am J Pathol. 1993;142(4):987–93.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Moll R, Mitze M, Frixen UH, Birchmeier W. Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. Am J Pathol. 1993;143(6):1731–42.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Berx G, Cleton-Jansen AM, Nollet F, de Leeuw WJ, van de Vijver M, Cornelisse C, et al. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 1995;14(24):6107–15.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Berx G, Becker KF, Höfler H, van Roy F. Mutations of the human E-cadherin (CDH1) gene. Hum Mutat. 1998;12(4):226–37.PubMedGoogle Scholar
  36. 36.
    De Leeuw WJ, Berx G, Vos CB, Peterse JL, Van de Vijver MJ, Litvinov S, et al. Simultaneous loss of e-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol. 1997;183:404–11.PubMedGoogle Scholar
  37. 37.
    Gonzalez MA, Pinder SE, Wencyk PM, Bell JA, Elston CW, Nicholson RI, et al. An immunohistochemical examination of the expression of E-cadherin, alpha- and beta/gamma-catenins, and alpha2- and beta1-integrins in invasive breast cancer. J Pathol. 1999;187(5):523–9.PubMedGoogle Scholar
  38. 38.
    Berx G, Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 2001;3(5):289–93.PubMedPubMedCentralGoogle Scholar
  39. 39.
    de Deus MR, Wludarski SC, Carvalho FM, Bacchi CE. Immunohistochemistry applied to the differential diagnosis between ductal and lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol. 2013;21(1):1–12.Google Scholar
  40. 40.
    Canas-Marques R, Schnitt SJ. E-cadherin immunohistochemistry in breast pathology: uses and pitfalls. Histopathology. 2016;68(1):57–69.PubMedGoogle Scholar
  41. 41.
    Hansford S, Kaurah P, Li-Chang H, Woo M, Senz J, Pinheiro H, et al. Hereditary diffuse gastric Cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015;1(1):23–32.PubMedGoogle Scholar
  42. 42.
    Corso G, Intra M, Trentin C, Veronesi P, Galimberti V. CDH1 germline mutations and hereditary lobular breast cancer. Familial Cancer. 2016;15(2):215–9.PubMedGoogle Scholar
  43. 43.
    Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast Cancer. Cell. 2015;163(2):506–19.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Desmedt C, Zoppoli G, Gundem G, Pruneri G, Larsimont D, Fornili M, et al. Genomic characterization of primary invasive lobular breast Cancer. J Clin Oncol. 2016;34(16):1872–81.PubMedGoogle Scholar
  45. 45.
    Desmedt C, Zoppoli G, Sotiriou C, Salgado R. Transcriptomic and genomic features of invasive lobular breast cancer. Semin Cancer Biol. 2017;44:98–105.PubMedGoogle Scholar
  46. 46.
    Karayiannakis AJ, Nakopoulou L, Gakiopoulou H, Keramopoulos A, Davaris PS, Pignatelli M. Expression patterns of beta-catenin in in situ and invasive breast cancer. Eur J Surg Oncol. 2001;27(1):31–6.PubMedGoogle Scholar
  47. 47.
    Sarrio´ D, Perez-Mies B, Hardisson D, Moreno-Bueno G, Suárez A, Cano A, et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene. 2004;23:3272–83.PubMedGoogle Scholar
  48. 48.
    Mastracci TL, Tjan S, Bane AL, O’Malley FP, Andrulis IL. E-cadherin alterations in atypical lobular hyperplasia and lobular carcinoma in situ of the breast. Mod Pathol. 2005;18(6):741–51.PubMedGoogle Scholar
  49. 49.
    Dabbs DJ, Bhargava R, Chivukula M. Lobular versus ductal breast neoplasms: the diagnostic utility of p120 catenin. Am J Surg Pathol. 2007;31(3):427–37.PubMedGoogle Scholar
  50. 50.
    Dabbs DJ, Kaplai M, Chivukula M, Kanbour A, Kanbour-Shakir A, Carter GJ. The spectrum of morphomolecular abnormalities of the E-cadherin/catenin complex in pleomorphic lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol. 2007;15(3):260–6.PubMedGoogle Scholar
  51. 51.
    Da Silva L, Parry S, Reid L, Keith P, Waddell N, Kossai M, et al. Aberrant expression of E-cadherin in lobular carcinomas of the breast. Am J Surg Pathol. 2008;32(5):773–83.PubMedGoogle Scholar
  52. 52.
    Rakha EA, Patel A, Powe DG, Benhasouna A, Green AR, Lambros MB, et al. Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol. 2010;34(10):1472–9.PubMedGoogle Scholar
  53. 53.
    Acs G, Lawton TJ, Rebbeck TR, LiVolsi VA, Zhang PJ. Differential expression of E-cadherin in lobular and ductal neoplasms of the breast and its biologic and diagnostic implications. Am J Clin Pathol. 2001;115(1):85–98.PubMedGoogle Scholar
  54. 54.
    Wheeler DT, Tai LH, Bratthauer GL, Waldner DL, Tavassoli FA. Tubulolobular carcinoma of the breast: an analysis of 27 cases of a tumor with a hybrid morphology and immunoprofile. Am J Surg Pathol. 2004;28(12):1587–93.PubMedGoogle Scholar
  55. 55.
    Kuroda H, Tamaru J, Takeuchi I, Ohnisi K, Sakamoto G, Adachi A, et al. Expression of E-cadherin, alpha-catenin, and beta-catenin in tubulolobular carcinoma of the breast. Virchows Arch. 2006;448(4):500–5.PubMedGoogle Scholar
  56. 56.
    Esposito NN, Chivukula M, Dabbs DJ. The ductal phenotypic expression of the E-cadherin/catenin complex in tubulolobular carcinoma of the breast: an immunohistochemical and clinicopathologic study. Mod Pathol. 2007;20(1):130–8.PubMedGoogle Scholar
  57. 57.
    Naidoo K, Beardsley B, Carder PJ, Deb R, Fish D, Girling A, et al. Accuracy of classification of invasive lobular carcinoma on needle core biopsy of the breast. J Clin Pathol. 2016;69(12):1122–3.PubMedGoogle Scholar
  58. 58.
    Rakha EA, Abd El Rehim D, Pinder SE, Lewis SA, Ellis IO. E-cadherin expression in invasive non-lobular carcinoma of the breast and its prognostic significance. Histopathology. 2005;46(6):685–93.PubMedGoogle Scholar
  59. 59.
    Rakha EA, Gill MS, El-Sayed ME, Khan MM, Hodi Z, Blamey RW, et al. The biological and clinical characteristics of breast carcinoma with mixed ductal and lobular morphology. Breast Cancer Res Treat. 2009;114(2):243–50.PubMedGoogle Scholar
  60. 60.
    Arps DP, Healy P, Zhao L, Kleer CG, Pang JC. Invasive ductal carcinoma with lobular features: a comparison study to invasive ductal and invasive lobular carcinomas of the breast. Breast Cancer Res Treat. 2013;138(3):719–26.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Moran MS, Schnitt SJ, Giuliano AE, Harris JR, Khan SA, Horton J, et al. Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int J Radiat Oncol Biol Phys. 2014;88(3):553–64.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Chen YY, et al. Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res. 2003;63(21):7167–75.PubMedGoogle Scholar
  63. 63.
    Zhao H, Langerød A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell. 2004;15(6):2523–36.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Bertucci F, Orsetti B, Nègre V, Finetti P, Rougé C, Ahomadegbe JC, et al. Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene. 2008;27(40):5359–72.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, et al. The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol. 2010;220(1):45–57.PubMedGoogle Scholar
  66. 66.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative primary breast cancer. N Engl J Med. 2004;351:2817–26.PubMedGoogle Scholar
  67. 67.
    Paik A, Tang G, Shuk S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor positive breast cancer. J Clin Oncol. 2006;24:3726–34.PubMedCentralGoogle Scholar
  68. 68.
    Conlon N, Ross DS, Howard J, Catalano JP, Dickler MN, Tan LK. Is there a role for Oncotype dx testing in invasive lobular carcinoma? Breast J. 2015;21(5):514–9.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Tsai ML, Lillemoe TJ, Finkelstein MJ, Money JE, Susnik B, Grimm E, et al. Utility of Oncotype DX risk assessment in patients with invasive lobular carcinoma. Clin Breast Cancer. 2016 Feb;16(1):45–50.PubMedGoogle Scholar
  70. 70.
    Felts JL, Zhu J, Han B, Smith SJ, Truica CI. An analysis of Oncotype DX recurrence scores and Clinicopathologic characteristics in invasive lobular breast Cancer. Breast J. 2017;23(6):677–86.PubMedGoogle Scholar
  71. 71.
    Michaut M, Chin SF, Majewski I, Severson TM, Bismeijer T, de Koning L, et al. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer. Sci Rep. 2016;6:18517.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Moten A, Obirieze A, Wilson LL. Characterizing lobular carcinoma of the male breast using the SEER database. J Surg Res. 2013;185(2):e71–6.PubMedGoogle Scholar
  73. 73.
    Maguire A, Brogi E. Sentinel lymph nodes for breast carcinoma: an update on current practice. Histopathology. 2016;68(1):152–67.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Rosen PP. Chapter 44, pathologic examination of breast and lymph node specimens, including sentinel lymph nodes. In: Rosen’s breast pathology. 3rd ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2009. p. 1034–102.Google Scholar
  75. 75.
    Cserni G, Bianchi S, Vezzosi V, Peterse H, Sapino A, Arisio R, et al. The value of cytokeratin immunohistochemistry in the evaluation of axillary sentinel lymph nodes in patients with lobular breast carcinoma. J Clin Pathol. 2006;59(5):518–22.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Patel A, D’Alfonso T, Cheng E, Hoda SA. Sentinel lymph nodes in classic invasive lobular carcinoma of the breast: cytokeratin immunostain ensures detection, and precise determination of extent, of involvement. Am J Surg Pathol. 2017;41(11):1499–505.PubMedGoogle Scholar
  77. 77.
    Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW, Blumencranz PW, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305(6):569–75.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Giuliano AE, Ballman KV, McCall L, Beitsch PD, Brennan MB, Kelemen PR, et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast Cancer and sentinel node metastasis: the ACOSOG Z0011 (Alliance) randomized clinical trial. JAMA. 2017;318(10):918–26.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Weaver DL, Ashikaga T, Krag DN, Skelly JM, Anderson SJ, Harlow SP, et al. Effect of occult metastases on survival in node-negative breast cancer. N Engl J Med. 2011;364(5):412–21.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Sapino A, Cassoni P, Ferrero E, Bongiovanni M, Righi L, Fortunati N, et al. Estrogen receptor alpha is a novel marker expressed by follicular dendritic cells in lymph nodes and tumor-associated lymphoid infiltrates. Am J Pathol. 2003;163(4):1313–20.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Grube BJ, Hansen NM, Ye X, Giuliano AE. Tumor characteristics predictive of sentinel node metastases in 105 consecutive patients with invasive lobular carcinoma. Am J Surg. 2002;184(4):372–6.PubMedGoogle Scholar
  82. 82.
    Classe JM, Loussouarn D, Campion L, Fiche M, Curtet C, Dravet F, et al. Validation of axillary sentinel lymph node detection in the staging of early lobular invasive breast carcinoma: a prospective study. Cancer. 2004;100(5):935–41.PubMedGoogle Scholar
  83. 83.
    Jensen AJ, Naik AM, Pommier RF, Vetto JT, Troxell ML. Factors influencing accuracy of axillary sentinel lymph node frozen section for breast cancer. Am J Surg. 2010;199(5):629–35.PubMedGoogle Scholar
  84. 84.
    Taras AR, Hendrickson NA, Pugliese MS, Lowe KA, Atwood M, Beatty JD. Intraoperative evaluation of sentinel lymph nodes in invasive lobular carcinoma of the breast. Am J Surg. 2009;197(5):643–6; discussion 646–7PubMedGoogle Scholar
  85. 85.
    Creager AJ, Geisinger KR, Perrier ND, Shen P, Shaw JA, Young PR, Case D, Levine EA. Intraoperative imprint cytologic evaluation of sentinel lymph nodes for lobular carcinoma of the breast. Ann Surg. 2004;239(1):61–6.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Howard-McNatt M, Geisinger KR, Stewart JH 4th, Shen P, Levine EA. Is intraoperative imprint cytology evaluation still feasible for the evaluation of sentinel lymph nodes for lobular carcinoma of the breast? Ann Surg Oncol. 2012;19(3):929–34.PubMedGoogle Scholar
  87. 87.
    Tavassoli FA, Eusebi V. Chapter8, major variants of carcinoma: invasive lobular carcinoma. In: Tumors of the mammary gland. Washington DC: ARP press; 2009. p. 156–68.Google Scholar
  88. 88.
    Miettinen M, PA MC, Sarlomo-Rikala M, Rys J, Czapiewski P, Wazny K, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38(1):13–22.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Wendroth SM, Mentrikoski MJ, Wick MR. GATA3 expression in morphologic subtypes of breast carcinoma: a comparison with gross cystic disease fluid protein 15 and mammaglobin. Ann Diagn Pathol. 2015;19:6–9.PubMedGoogle Scholar
  90. 90.
    Asch-Kendrick R, Cimino-Mathews A. The role of GATA3 in breast carcinomas: a review. Hum Pathol. 2016;48:37–47.PubMedGoogle Scholar
  91. 91.
    Raju U, Ma CK, Shaw A. Signet ring variant of lobular carcinoma of the breast: a clinicopathologic and immunohistochemical study. Mod Pathol. 1993;6(5):516–20.PubMedGoogle Scholar
  92. 92.
    Gown AM, Fulton RS, Kandalaft PL. Markers of metastatic carcinoma of breast origin. Histopathology. 2016;68(1):86–95.PubMedGoogle Scholar
  93. 93.
    Habashy HO, Powe DG, Rakha EA, Ball G, Macmillan RD, Green AR, Ellis IO. The prognostic significance of PELP1 expression in invasive breast cancer with emphasis on the ER-positive luminal-like subtype. Breast Cancer Res Treat. 2010;120(3):603–12.PubMedGoogle Scholar
  94. 94.
    Davis DG, Siddiqui MT, Oprea-Ilies G, Stevens K, Osunkoya AO, Cohen C, et al. GATA-3 and FOXA1 expression is useful to differentiate breast carcinoma from other carcinomas. Hum Pathol. 2016;47(1):26–31.PubMedGoogle Scholar
  95. 95.
    Peng Y, Butt YM, Chen B, Zhang X, Tang P. Update on Immunohistochemical analysis in breast lesions. Arch Pathol Lab Med. 2017;141(8):1033–51.PubMedGoogle Scholar
  96. 96.
    Robens J, Goldstein L, Gown AM, Schnitt SJ. Thyroid transcription factor-1 expression in breast carcinomas. Am J Surg Pathol. 2010;34:1881–5.PubMedGoogle Scholar
  97. 97.
    Provenzano E, Byrne DJ, Russell PA, Wright GM, Generali D, Fox SB. Differential expression of immunohistochemical markers in primary lung and breast cancers enriched for triple-negative tumours. Histopathology. 2016;68:367–77.PubMedGoogle Scholar
  98. 98.
    Chu PG, Weiss LM. Immunohistochemical characterization of signet-ring cell carcinomas of the stomach, breast, and colon. Am J Clin Pathol. 2004;121(6):884–92.PubMedGoogle Scholar
  99. 99.
    Mahmud N, Ford JM, Longacre TA, Parent R, Norton JA. Metastatic lobular breast carcinoma mimicking primary signet ring adenocarcinoma in a patient with a suspected CDH1 mutation. J Clin Oncol. 2015;33(4):e19–21.PubMedGoogle Scholar
  100. 100.
    Ellis CL, Chang AG, Cimino-Mathews A, Argani P, Youssef RF, Kapur P, et al. GATA-3 immunohistochemistry in the differential diagnosis of adenocarcinoma of the urinary bladder. Am J Surg Pathol. 2013;37(11):1756–60.PubMedGoogle Scholar
  101. 101.
    Borhan WM, Cimino-Mathews AM, Montgomery EA, Epstein JI. Immunohistochemical differentiation of Plasmacytoid Urothelial carcinoma from secondary carcinoma involvement of the bladder. Am J Surg Pathol. 2017;41(11):1570–5.PubMedGoogle Scholar
  102. 102.
    Su MC, Yuan RH, Lin CY, Jeng YM. Cadherin-17 is a useful diagnostic marker for adenocarcinomas of the digestive system. Mod Pathol. 2008;21(11):1379–86.PubMedGoogle Scholar
  103. 103.
    Laury AR, Perets R, Piao H, Krane JF, Barletta JA, French C, et al. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol. 2011;35(6):816–26.PubMedGoogle Scholar
  104. 104.
    Recine MA, Deavers MT, Middleton LP, Silva EG, Malpica A. Serous carcinoma of the ovary and peritoneum with metastases to the breast and axillary lymph nodes: a potential pitfall. Am J Surg Pathol. 2004;28(12):1646–51.PubMedGoogle Scholar
  105. 105.
    Nonaka D, Chiriboga L, Soslow RA. Expression of PAX8 as a useful marker in distinguishing ovarian carcinomas from mammary carcinomas. Am J Surg Pathol. 2008;32:1566–71.PubMedGoogle Scholar
  106. 106.
    Bhargava R, Beriwal S, Dabbs DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol. 2007;127:103–13.PubMedGoogle Scholar
  107. 107.
    Onuma K, Dabbs DJ, Bhargava R. Mammaglobin expression in the female genital tract: immunohistochemical analysis in benign and neoplastic endocervix and endometrium. Int J Gynecol Pathol. 2008;27:418–25.PubMedGoogle Scholar
  108. 108.
    Kandalaft PL, Simon RA, Isacson C, Gown AM. Comparative sensitivities and specificities of antibodies to breast markers GCDFP-15, mammaglobin a, and different clones of antibodies to GATA-3: a study of 338 tumors using whole sections. Appl Immunohistochem Mol Morphol. 2016;24:609–14.PubMedGoogle Scholar
  109. 109.
    So JS, Epstein JI. GATA3 expression in paragangliomas: a pitfall potentially leading to misdiagnosis of urothelial carcinoma. Mod Pathol. 2013;26(10):1365–70.PubMedGoogle Scholar
  110. 110.
    Barbareschi M, Maisonneuve P, Aldovini D, Cangi MG, Pecciarini L, Angelo Mauri F, et al. High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer. 2003;98(3):474–83.PubMedGoogle Scholar
  111. 111.
    Kambham N, Kong C, Longacre TA, Natkunam Y. Utility of syndecan-1 (CD138) expression in the diagnosis of undifferentiated malignant neoplasms: a tissue microarray study of 1,754 cases. Appl Immunohistochem Mol Morphol. 2005;13(4):304–10.PubMedGoogle Scholar
  112. 112.
    Cessna MH, Zhou H, Perkins SL, Tripp SR, Layfield L, Daines C, et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001;25(9):1150–7.PubMedGoogle Scholar
  113. 113.
    Charville GW, Varma S, Forgó E, Dumont SN, Zambrano E, Trent JC, et al. PAX7 expression in Rhabdomyosarcoma, related soft tissue tumors, and small round blue cell neoplasms. Am J Surg Pathol. 2016;40(10):1305–15.PubMedGoogle Scholar
  114. 114.
    Rogers WM, Dobo E, Norton JA, Van Dam J, Jeffrey RB, Huntsman DG, et al. Risk-reducing total gastrectomy for germline mutations in E-cadherin (CDH1): pathologic findings with clinical implications. Am J Surg Pathol. 2008;32(6):799–809.PubMedGoogle Scholar
  115. 115.
    Fox MD, Xiao L, Zhang M, Kamat AM, Siefker-Radtke A, Zhang L, et al. Plasmacytoid Urothelial carcinoma of the urinary bladder: a Clinicopathologic and Immunohistochemical analysis of 49 cases. Am J Clin Pathol. 2017;147(5):500–6.PubMedGoogle Scholar
  116. 116.
    Lakhani SR, Schnitt SJ, O’Malley F, van de Vijver MJ, Simpson PT, Palcios J. Lobular neoplasia. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ, editors. WHO classification of Tumours of the breast. Lyon: IARC; 2012. p. 77–80.Google Scholar
  117. 117.
    Mooney KL, Bassett LW, Apple SK. Upgrade rates of high-risk breast lesions diagnosed on core needle biopsy: a single-institution experience and literature review. Mod Pathol. 2016;29(12):1471–84.PubMedGoogle Scholar
  118. 118.
    Calhoun BC, Collins LC. Recommendations for excision following core needle biopsy of the breast: a contemporary evaluation of the literature. Histopathology. 2016;68:138–51.PubMedGoogle Scholar
  119. 119.
    Clark CJ, Whang S, Paige KT. Incidence of precancerous lesions in breast reduction tissue: a pathologic review of 562 consecutive patients. Plast Reconstr Surg. 2009;124(4):1033–9.PubMedGoogle Scholar
  120. 120.
    Ambaye AB, Goodwin AJ, MacLennan SE, Naud S, Weaver DL. Recommendations for pathologic evaluation of reduction mammoplasty specimens: a prospective study with systematic tissue sampling. Arch Pathol Lab Med. 2017;141(11):1523–8.PubMedGoogle Scholar
  121. 121.
    Portschy PR, Marmor S, Nzara R, Virnig BA, Tuttle TM. Trends in incidence and management of lobular carcinoma in situ: a population-based analysis. Ann Surg Oncol. 2013;20(10):3240–6.PubMedGoogle Scholar
  122. 122.
    Li CI, Anderson BO, Daling JR, Moe RE. Changing incidence of lobular carcinoma in situ of the breast. Breast Cancer Res Treat. 2002;75(3):259–68.PubMedGoogle Scholar
  123. 123.
    Scoggins M, Krishnamurthy S, Santiago L, Yang W. Lobular carcinoma in situ of the breast: clinical, radiological, and pathological correlation. Acad Radiol. 2013;20(4):463–70.PubMedGoogle Scholar
  124. 124.
    Amos B, Chetlen A, Williams N. Atypical lobular hyperplasia and lobular carcinoma in situ at core needle biopsy of the breast: an incidental finding or are there characteristic imaging findings? Breast Dis. 2016;36(1):5–14.PubMedGoogle Scholar
  125. 125.
    Maxwell AJ, Clements K, Dodwell DJ, Evans AJ, Francis A, Hussain M, et al. The radiological features, diagnosis and management of screen-detected lobular neoplasia of the breast: findings from the Sloane project. Breast. 2016;27:109–15.PubMedGoogle Scholar
  126. 126.
    Choi BB, Kim SH, Park CS, Cha ES, Lee AW. Radiologic findings of lobular carcinoma in situ: mammography and ultrasonography. J Clin Ultrasound. 2011;39(2):59–63.PubMedGoogle Scholar
  127. 127.
    Heller SL, Elias K, Gupta A, Greenwood HI, Mercado CL, Moy L. Outcome of high-risk lesions at MRI-guided 9-gauge vacuum- assisted breast biopsy. AJR Am J Roentgenol. 2014;202(1):237–45.PubMedGoogle Scholar
  128. 128.
    Flanagan MR, Rendi MH, Calhoun KE, Anderson BO, Javid SH. Pleomorphic lobular carcinoma in situ: radiologic-pathologic features and clinical management. Ann Surg Oncol. 2015;22(13):4263–9.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Hoda SA, Brogi E, Koerner FC, Rosen PP. Chapter 31 lobular carcinoma in situ and atypical lobular hyperplasia. In: Rosen’s breast pathology. 4th ed. Philadelphia: Wolters Kluwer; 2014. p. 797–854.Google Scholar
  130. 130.
    Schnitt SJ, Collins L. Chapter 5, lobular carcinoma in situ and atypical lobular hyperplasia. In: Biopsy interpretation of the breast. 3rd ed. Philadelphia: Wolters Kluwer; 2018. p. 141–79.Google Scholar
  131. 131.
    Tavassoli FA, Eusebi V. Chapter 3, lobular intraepithelial neoplasia. In: Tumors of the mammary gland. Washington DC: ARP Press; 2009. p. 53–66.Google Scholar
  132. 132.
    American Society of Breast Surgeons. Consensus guideline on concordance assessment of image-guided breast biopsies and management of borderline or high-risk lesions. Accessed 29 Oct 2017.
  133. 133.
    National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: Breast cancer. Version 2.2017. Accessed 29 Oct 2017.
  134. 134.
    Page DL, Kidd TE Jr, Dupont WD, Simpson JF, Rogers LW. Lobular neoplasia of the breast: higher risk for subsequent invasive cancer predicted by more extensive disease. Hum Pathol. 1991;22(12):1232–9.PubMedGoogle Scholar
  135. 135.
    Rendi MH, Dintzis SM, Lehman CD, Calhoun KE, Allison KH. Lobular in-situ neoplasia on breast core needle biopsy: imaging indication and pathologic extent can identify which patients require excisional biopsy. Ann Surg Oncol. 2012;19(3):914–21.PubMedGoogle Scholar
  136. 136.
    Susnik B, Day D, Abeln E, Bowman T, Krueger J, Swenson KK, et al. Surgical outcomes of lobular neoplasia diagnosed in Core biopsy: prospective study of 316 cases. Clin Breast Cancer. 2016;16(6):507–13.PubMedGoogle Scholar
  137. 137.
    Wong SM, King T, Boileau JF, Barry WT, Golshan M. Population-based analysis of breast Cancer incidence and survival outcomes in women diagnosed with lobular carcinoma in situ. Ann Surg Oncol. 2017;24(9):2509–17.PubMedGoogle Scholar
  138. 138.
    King TA, Pilewskie M, Muhsen S, Patil S, Mautner SK, Park A, et al. Lobular carcinoma in situ: a 29-year longitudinal experience evaluating Clinicopathologic features and breast Cancer risk. J Clin Oncol. 2015;33(33):3945–52.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Jorns J, Sabel MS, Pang JC. Lobular neoplasia: morphology and management. Arch Pathol Lab Med. 2014;138(10):1344–9.PubMedGoogle Scholar
  140. 140.
    Andrade VP, Ostrovnaya I, Seshan VE, Morrogh M, Giri D, Olvera N, et al. Clonal relatedness between lobular carcinoma in situ and synchronous malignant lesions. Breast Cancer Res. 2012;14(4):R103.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Sakr RA, Schizas M, Carniello JV, Ng CK, Piscuoglio S, Giri D, et al. Targeted capture massively parallel sequencing analysis of LCIS and invasive lobular cancer: repertoire of somatic genetic alterations and clonal relationships. Mol Oncol. 2016;10(2):360–70.PubMedGoogle Scholar
  142. 142.
    Begg CB, Ostrovnaya I, Carniello JV, Sakr RA, Giri D, Towers R, et al. Clonal relationships between lobular carcinoma in situ and other breast malignancies. Breast Cancer Res. 2016;18(1):66.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Rosen PP, Kosloff C, Lieberman PH, Adair F, Braun DW Jr. Lobular carcinoma in situ of the breast. Detailed analysis of 99 patients with average follow-up of 24 years. Am J Surg Pathol. 1978;2(3):225–51.PubMedGoogle Scholar
  144. 144.
    Bodian CA, Perzin KH, Lattes R. Lobular neoplasia. Long term risk of breast cancer and relation to other factors. Cancer. 1996;78(5):1024–34.PubMedGoogle Scholar
  145. 145.
    Page DL, Schuyler PA, Dupont WD, Jensen RA, Plummer WD Jr, Simpson JF. Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet. 2003;361(9352):125–9.PubMedGoogle Scholar
  146. 146.
    Collins LC, Baer HJ, Tamimi RM, Connolly JL, Colditz GA, Schnitt SJ. Magnitude and laterality of breast cancer risk according to histologic type of atypical hyperplasia: results from the Nurses’ health study. Cancer. 2007;109(2):180–7.PubMedGoogle Scholar
  147. 147.
    Coopey SB, Mazzola E, Buckley JM, Sharko J, Belli AK, Kim EM, et al. The role of chemoprevention in modifying the risk of breast cancer in women with atypical breast lesions. Breast Cancer Res Treat. 2012;136(3):627–33.PubMedGoogle Scholar
  148. 148.
    Simpson PT, Gale T, Fulford LG, Reis-Filho JS, Lakhani SR. The diagnosis and management of pre-invasive breast disease: pathology of atypical lobular hyperplasia and lobular carcinoma in situ. Breast Cancer Res. 2003;5(5):258–62.PubMedPubMedCentralGoogle Scholar
  149. 149.
    O’Malley FP. Lobular neoplasia: morphology, biological potential and management in core biopsies. Mod Pathol. 2010;23(Suppl 2):S14–25.PubMedGoogle Scholar
  150. 150.
    Page DL, Dupont WD, Rogers LW. Ductal involvement by cells of atypical lobular hyperplasia in the breast: a long-term follow-up study of cancer risk. Hum Pathol. 1988;19(2):201–7.PubMedGoogle Scholar
  151. 151.
    Downs-Kelly E, Bell D, Perkins GH, Sneige N, Middleton LP. Clinical implications of margin involvement by pleomorphic lobular carcinoma in situ. Arch Pathol Lab Med. 2011;135(6):737–43.PubMedGoogle Scholar
  152. 152.
    Khoury T, Karabakhtsian RG, Mattson D, Yan L, Syriac S, Habib F, et al. Pleomorphic lobular carcinoma in situ of the breast: clinicopathological review of 47 cases. Histopathology. 2014;64(7):981–93.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Chen YY, Hwang ES, Roy R, DeVries S, Anderson J, Wa C, Fitzgibbons PL, et al. Genetic and phenotypic characteristics of pleomorphic lobular carcinoma in situ of the breast. Am J Surg Pathol. 2009;33(11):1683–94.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Boldt V, Stacher E, Halbwedl I, Popper H, Hultschig C, Moinfar F, Ullmann R, Tavassoli FA. Positioning of necrotic lobular intraepithelial neoplasias (LIN, grade 3) within the sequence of breast carcinoma progression. Genes Chromosom Cancer. 2010;49(5):463–70.PubMedGoogle Scholar
  155. 155.
    Shin SJ, Lal A, De Vries S, Suzuki J, Roy R, Hwang ES, Schnitt SJ, Waldman FM, Chen YY. Florid lobular carcinoma in situ: molecular profiling and comparison to classic lobular carcinoma in situ and pleomorphic lobular carcinoma in situ. Hum Pathol. 2013;44(10):1998–2009.PubMedGoogle Scholar
  156. 156.
    Fasola CE, Chen JJ, Jensen KC, Allison KH, Horst KC. Characteristics and clinical outcomes of pleomorphic lobular carcinoma in situ of the breast. Breast J. 2018;24(1):66–9.PubMedGoogle Scholar
  157. 157.
    Pieri A, Harvey J, Bundred N. Pleomorphic lobular carcinoma in situ of the breast: can the evidence guide practice? World J Clin Oncol. 2014;5(3):546–53.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Fadare O, Dadmanesh F, Alvarado-Cabrero I, Snyder R, Stephen Mitchell J, Tot T, et al. Lobular intraepithelial neoplasia [lobular carcinoma in situ] with comedo-type necrosis: a clinicopathologic study of 18 cases. Am J Surg Pathol. 2006;30(11):1445–53.PubMedGoogle Scholar
  159. 159.
    Bagaria SP, Shamonki J, Kinnaird M, Ray PS, Giuliano AE. The florid subtype of lobular carcinoma in situ: marker or precursor for invasive lobular carcinoma? Ann Surg Oncol. 2011;18(7):1845–51.PubMedGoogle Scholar
  160. 160.
    Bratthauer GL, Tavassoli FA. Lobular intraepithelial neoplasia: previously unexplored aspects assessed in 775 cases and their clinical implications. Virchows Arch. 2002;440(2):134–8.PubMedGoogle Scholar
  161. 161.
    Bussolati G, Botto Micca FB, Eusebi V, Betts CM. Myoepithelial cells in lobular carcinoma in situ of the breast: a parallel immunocytochemical and ultrastructural study. Ultrastruct Pathol. 1981;2(3):219–30.PubMedGoogle Scholar
  162. 162.
    Wang Y, Jindal S, Martel M, Wu Y, Schedin P, Troxell M. Myoepithelial cells in lobular carcinoma in situ: distribution and immunophenotype. Hum Pathol. 2016;55:126–34.PubMedGoogle Scholar
  163. 163.
    Sahoo S, Green I, Rosen PP. Bilateral Paget disease of the nipple associated with lobular carcinoma in situ. Arch Pathol Lab Med. 2002;126(1):90–2.PubMedGoogle Scholar
  164. 164.
    Vos CB, Cleton-Jansen AM, Berx G, de Leeuw WJ, ter Haar NT, van Roy F, et al. E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer. 1997;76(9):1131–3.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Bratthauer GL, Moinfar F, Stamatakos MD, Mezzetti TP, Shekitka KM, Man YG, et al. Combined E-cadherin and high molecular weight cytokeratin immunoprofile differentiates lobular, ductal, and hybrid mammary intraepithelial neoplasias. Hum Pathol. 2002;33(6):620–7.PubMedGoogle Scholar
  166. 166.
    Logan GJ, Dabbs DJ, Lucas PC, Jankowitz RC, Brown DD, Clark BZ, et al. Molecular drivers of lobular carcinoma in situ. Breast Cancer Res. 2015;17:76.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Mastracci TL, Shadeo A, Colby SM, Tuck AB, O’Malley FP, Bull SB, et al. Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferation in the breast. Genes Chromosom Cancer. 2006 Nov;45(11):1007–17.PubMedGoogle Scholar
  168. 168.
    Lu YJ, Osin P, Lakhani SR, Di Palma S, Gusterson BA, Shipley JM. Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res. 1998;58(20):4721–7.PubMedGoogle Scholar
  169. 169.
    Hwang ES, Nyante SJ, Yi Chen Y, Moore D, DeVries S, Korkola JE, et al. Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer. 2004;100(12):2562–72.PubMedGoogle Scholar
  170. 170.
    Buerger H, Simon R, Schäfer KL, Diallo R, Littmann R, Poremba C, et al. Genetic relation of lobular carcinoma in situ, ductal carcinoma in situ, and associated invasive carcinoma of the breast. Mol Pathol. 2000;53(3):118–21.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Tazaki E, Shishido-Hara Y, Mizutani N, Nomura S, Isaka H, Ito H, et al. Histopathological and clonal study of combined lobular and ductal carcinoma of the breast. Pathol Int. 2013;63(6):297–304.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Ang DC, Warrick AL, Shilling A, Beadling C, Corless CL, Troxell ML. Frequent phosphatidylinositol-3-kinase mutations in proliferative breast lesions. Mod Pathol. 2014;27(5):740–50.PubMedGoogle Scholar
  173. 173.
    Resetkova E, Albarracin C, Sneige N. Collagenous spherulosis of breast: morphologic study of 59 cases and review of the literature. Am J Surg Pathol. 2006;30(1):20–7.PubMedGoogle Scholar
  174. 174.
    Eisenberg RE, Hoda SA. Lobular carcinoma in situ with collagenous spherulosis: clinicopathologic characteristics of 38 cases. Breast J. 2014;20(4):440–1.PubMedGoogle Scholar
  175. 175.
    Singer B, Lin C-Y, West R. Fibroepithelial lesions of the breast involved by atypical epithelial proliferations: a 12-year single institution study. Mod Pathol. 2017;30(supple 2):71A.Google Scholar
  176. 176.
    Sin EI, Wong CY, Yong WS, Ong KW, Madhukumar P, Tan VK, et al. Breast carcinoma and phyllodes tumour: a case series. J Clin Pathol. 2016;69(4):364–9.PubMedGoogle Scholar
  177. 177.
    Middleton LP, Perkins GH, Tucker SL, Sahin AA, Singletary SE. Expression of ERalpha and ERbeta in lobular carcinoma in situ. Histopathology. 2007;50(7):875–80.PubMedGoogle Scholar
  178. 178.
    De Brot M, Koslow Mautner S, Muhsen S, Andrade VP, Mamtani A, et al. Pleomorphic lobular carcinoma in situ of the breast: a single institution experience with clinical follow-up and centralized pathology review. Breast Cancer Res Treat. 2017;165(2):411–20.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Masannat YA, Bains SK, Pinder SE, Purushotham AD. Challenges in the management of pleomorphic lobular carcinoma in situ of the breast. Breast. 2013;22(2):194–6.PubMedGoogle Scholar
  180. 180.
    Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and bowel project P-1 study. J Natl Cancer Inst. 1998;90(18):1371–88.PubMedGoogle Scholar
  181. 181.
    Cuzick J, Sestak I, Thorat MA. Impact of preventive therapy on the risk of breast cancer among women with benign breast disease. Breast. 2015;24(Suppl 2):S51–5.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Bevers TB. Breast cancer risk reduction therapy: the low-hanging fruit. J Natl Compr Cancer Netw. 2015;13(4):376–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Megan L. Troxell
    • 1
    Email author
  • Yun An Chen
    • 2
  • Jing Yu
    • 3
  • Debra M. Ikeda
    • 4
  • Kimberly H. Allison
    • 1
  1. 1.Stanford University School of MedicineDepartment of PathologyStanfordUSA
  2. 2.University of WashingtonDepartment of RadiologySeattleUSA
  3. 3.Magee-Womens HospitalUniversity of Pittsburgh Medical CenterPittsburghUSA
  4. 4.Stanford University School of MedicineStanfordUSA

Personalised recommendations