Advertisement

Ecological Functions of Vertebrate Scavenging

  • James C. BeasleyEmail author
  • Zachary H. Olson
  • Nuria Selva
  • Travis L. DeVault
Chapter
Part of the Wildlife Research Monographs book series (WIREMO, volume 2)

Abstract

Although the process of converting nutrients sequestered within carcasses has historically been portrayed as occurring at the detrital level, there is a growing consensus that vertebrate scavenging is pervasive among ecosystems across the globe. Throughout this chapter we highlight the central role scavenging plays in ecosystem functions such as nutrient cycling and transport within and among ecosystems, biodiversity maintenance, and disease transmission dynamics. Vertebrate scavenging of carrion also can create more stable food webs by promoting food web complexity, providing routes by which communities may sequester resources at higher trophic levels, and subsidizing populations of vertebrates during periods of food limitation. However, anthropogenic activities that directly alter vertebrate scavenging communities or shift the competitive balance among the various groups of organisms that utilize carrion may have cascading impacts within ecosystems and disrupt ecosystem services provided by carrion consumers.

Keywords

Agricultural ecosystem Białowieża Primeval Forest Biodiversity Carrion Disease Ecosystem services Facultative scavenger Food web Obligate scavenger Yellowstone National Park 

Notes

Acknowledgements

Contributions of James Beasley were partially supported by the U.S. Department of Energy under Award Number DE-EM0004391 to the University of Georgia Research Foundation.

References

  1. Abernethy E, Turner K, Beasley JC et al (2016) Carcasses of invasive species are primarily utilized by invasive scavengers in an island ecosystem. Ecosphere 7:e01496CrossRefGoogle Scholar
  2. Allen ML, Elbroch LM, Wilmers CC, Wittmer HU (2014) Trophic facilitation or limitation? Comparative effects of pumas and black bears on the scavenger community. PLoS One 9:e102257PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arjo WM, Pletscher DH (1999) Behavioral responses of coyotes to wolf recolonization in northwestern Montana. Can J Zool 77:1919–1927CrossRefGoogle Scholar
  4. Atwood TC, Gese EM (2008) Coyotes and recolonizing wolves: social rank mediates risk-conditional behaviour at ungulate carcasses. Anim Behav 75:753–762CrossRefGoogle Scholar
  5. Avery ML, Cummings JL (2004) Livestock depredations by black vultures and golden eagles. Sheep Goat Res J 19:58–63Google Scholar
  6. Bartholomew A, Bohnsack JA (2005) A review of catch-and-release angling mortality with implications for no-take reserves. Rev Fish Biol Fish 15:129–154CrossRefGoogle Scholar
  7. Barton PS, Cunningham SA, Lindenmayer DB, Manning AD (2013) The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171:761–772PubMedPubMedCentralGoogle Scholar
  8. Beard KH, Pitt WC, Price EA (2009) Biology and impacts of Pacific Island invasive species. 5. Eleutherodactylus coqui, the coqui frog (Anura: Leptodactylidae). Pac Sci 63:297–316CrossRefGoogle Scholar
  9. Beasley JC, Olson ZH, Dharmarajan G, Eagan TS II, Rhodes OE Jr (2011) Spatio-temporal variation the demographic attributes of a generalist mesopredator. Landsc Ecol 26:937–950CrossRefGoogle Scholar
  10. Beasley JC, Olson ZH, DeVault TL (2012) Carrion cycling in food webs: comparisons among terrestrial and marine ecosystems. Oikos 121:1021–1026Google Scholar
  11. Beasley JC, Olson ZH, Beatty WS, Dharmarajan G, Rhodes OE Jr (2013) Effects of culling on mesopredator populations dynamics. PLoS One 8:e58982PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beasley JC, Olson ZH, DeVault TL (2015) Ecological role of vertebrate scavengers. In: Benbow ME, Tomberlin J, Tarone A (eds) Carrion ecology, evolution, and their application. CRC, Boca Raton, pp 107–128CrossRefGoogle Scholar
  13. Bellan SE, Turnbull PCB, Beyer W, Getz WM (2013) Effects of experimental exclusion of scavengers from carcasses of anthrax-infected herbivores on Bacillus anthracis sporulation, survival, and distribution. Appl Environ Microbiol 79:3756–3761PubMedPubMedCentralCrossRefGoogle Scholar
  14. Benbow EM, Barton P, Ulyshen M, Beasley JC, DeVault TL, Strickland M, Tomberlin J, Jordan H, Pechal J (2019) Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol Monogr 89:e01331, pp. 1–29CrossRefGoogle Scholar
  15. Berger KM, Gese EM, Berger J (2008) Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn. Ecology 89:818–828PubMedCrossRefPubMedCentralGoogle Scholar
  16. Braack LEO (1987) Community dynamics of carrion-attendant arthropods in tropical African woodland. Oecologia 72:402–409PubMedPubMedCentralGoogle Scholar
  17. Britton JC, Morton B (1994) Marine carrion and scavengers. Oceanogr Mar Biol Annu Rev 32:369–434Google Scholar
  18. Broadhurst MK, Suuronen P, Hulme A (2006) Estimating collateral mortality from towed fishing gear. Fish Fish 7:180–218CrossRefGoogle Scholar
  19. Buckley NJ (1999) Black vulture (Coragyps atratus). In: Poole A (ed) The birds of North America Online, Account 411. Cornell Lab of Ornithology, Ithaca, NY. http://bna.birds.cornell.edu.proxy-remote.galib.uga.edu/bna/species/411Google Scholar
  20. Bump JK, Webster CR, Vucetich JA, Peterson RO, Shields JM, Powers MD (2009a) Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive advantage. Ecosystems 12:996–1007Google Scholar
  21. Bump JK, Peterson RO, Vucetich JA (2009b) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90:3159–3167PubMedPubMedCentralCrossRefGoogle Scholar
  22. Butman CA, Carlton JT, Palumbi SR (1995) Whaling effects on deep-sea biodiversity. Conserv Biol 9:462–464CrossRefGoogle Scholar
  23. Byrd JH, Castner JL (2010) Forensic entomology: the utility of arthropods in legal investigations. CRC, Boca RatonGoogle Scholar
  24. Carbone C, Turvey ST, Bielby J (2011) Intra-guild competition and its implications for one of the biggest terrestrial predators, Tyrannosaurus rex. Proc R Soc B 278:2682–2690PubMedCrossRefPubMedCentralGoogle Scholar
  25. Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24PubMedPubMedCentralCrossRefGoogle Scholar
  26. Catchpole TL, Frid CLJ, Gray TS (2006) Importance of discards from the English Nephrops norvegicus fishery in the North Sea to marine scavengers. Mar Ecol Prog Ser 313:215–226CrossRefGoogle Scholar
  27. Cederholm CJ, Kunze MD, Murota T, Sibatani A (1999) Pacific salmon carcasses: essential contributions of nutrients and energy for aquatic and terrestrial ecosystems. Fisheries 24:6–15CrossRefGoogle Scholar
  28. Coe MJ (1978) The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. J Arid Environ 1:71–86CrossRefGoogle Scholar
  29. Cohen JE (1978) Food webs and niche space. Princeton University Press, Princeton, NJGoogle Scholar
  30. Cohen JE, Briand F, Newman CM (1990) Community food webs: data and theory. Springer, New YorkCrossRefGoogle Scholar
  31. Collins C, Kays R (2011) Causes of mortality in North American populations of large and medium-sized mammals. Anim Conserv 14:474–483CrossRefGoogle Scholar
  32. Conover MR, Dinkins JB, Haney MJ (2013) Impacts of weather and accidents on wildlife. In: Wildlife management and conservation: contemporary principles and practices. Johns Hopkins University Press, Baltimore, MD, pp 144–155Google Scholar
  33. Cook RS (1993) Ecological issues on reintroducing wolves into Yellowstone National Park. US Department of the Interior, National Park Service Scientific MonographGoogle Scholar
  34. Cornaby BW (1974) Carrion reduction by animals in contrasting tropical habitats. Biotropica 6:51–63CrossRefGoogle Scholar
  35. Cortés-Avizanda A, Selva N, Carrete M, Donázar JA (2009) Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl Ecol 10:265–272CrossRefGoogle Scholar
  36. Cortés-Avizanda A, Jovani R, Carrete M, Donázar JA (2012) Resource unpredictability promotes species diversity and coexistence in an avian scavenger guild: a field experiment. Ecology 93:2570–2579CrossRefGoogle Scholar
  37. De Angelis DL (1975) Stability and connectance in food web models. Ecology 56:238–243CrossRefGoogle Scholar
  38. DeVault TL, Rhodes OE Jr, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234CrossRefGoogle Scholar
  39. DeVault TL, Reinhart BD, Brisbin IL Jr, Rhodes OE Jr (2004) Home ranges of sympatric black and turkey vultures in South Carolina. Condor 106:706–711CrossRefGoogle Scholar
  40. DeVault TL, Olson ZH, Beasley JC, Rhodes OE Jr (2011) Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl Ecol 12:268–274CrossRefGoogle Scholar
  41. DeVault TL, Beasley JC, Olson ZH, Moleón M, Carrete M, Margalida A, Sánchez-Zapata JA (2016) Ecosystem services provided by avian scavengers. In: Şekercioğlu CH, Wenny DG, Whelan CJ (eds) Why do birds matter? Avian ecological function and ecosystem services. University of Chicago Press, pp 235–270Google Scholar
  42. DeVault TL, Seamans TW, Linnell KE, Sparks DW, Beasley JC (2017) Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter? Ecosphere 8(11):e01994CrossRefGoogle Scholar
  43. Dobson AP (2014) Yellowstone wolves and the forces that structure natural systems. PLoS Biol 12:e1002025PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dunne JA (2006) The network structure of food webs. In: Pascual M, Dunne JA (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, Oxford, pp 27–86Google Scholar
  45. Dunne JA, Williams RJ, Martínez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci U S A 99:12917–12922PubMedPubMedCentralCrossRefGoogle Scholar
  46. Elton C (1927) Animal ecology. Sidgwick and Jackson, LondonGoogle Scholar
  47. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  48. Fallows C, Gallagher AJ, Hammerschlag N (2013) White sharks (Carcharodon carcharias) scavenging on whales and its potential role in further shaping the ecology of an apex predator. PLoS One 8:e60797PubMedPubMedCentralCrossRefGoogle Scholar
  49. Farwig N, Brandl R, Siemann S, Wiener F, Müller J (2014) Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia 175:1291–1300CrossRefGoogle Scholar
  50. Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, Fahrig L, France RL, Goldman CR, Haanue K, Jones J, Swanson F, Turrentine T, Winter TC (2003) Road ecology: science and solutions. Island Press, WashingtonGoogle Scholar
  51. Fuglei E, Øritsland NA, Prestrud P (2003) Local variation in arctic fox abundance on Svalbard, Norway. Polar Biol 26:93–98Google Scholar
  52. Gasaway WC, Mossestad KT, Stander PE (1991) Food acquisition by spotted hyenas in Etosha National Park, Namibia: predation versus scavenging. African J Ecol 29:64–75CrossRefGoogle Scholar
  53. Gende SM, Edwards RT, Willson MF, Wipfli MS (2002) Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52:917–928CrossRefGoogle Scholar
  54. Gende SM, Quinn TP, Hilborn R, Hendry AP, Dickerson B (2004) Brown bears selectively kill salmon with higher energy content but only in habitats that facilitate choice. Oikos 104:518–528CrossRefGoogle Scholar
  55. Gese EM, Ruff RL, Crabtree RL (1996) Foraging ecology of coyotes (Canis latrans): the influence of extrinsic factors and a dominance hierarchy. Can J Zool 74:769–783CrossRefGoogle Scholar
  56. Gooday AJ, Turley CM, Allen JA (1990) Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philos Trans R Soc Lond Ser B Biol Sci 331:119–138CrossRefGoogle Scholar
  57. Green GI, Mattson DJ, Peek JM (1997) Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park. J Wildl Manag 61:1040–1055CrossRefGoogle Scholar
  58. Green RE, Newton I, Shultz S, Cunningham AA, Gilbert M, Pain DJ, Prakash V (2004) Diclofenac poisoning as a cause of vulture population declines across the Indian subcontinent. J Appl Ecol 41:793–800CrossRefGoogle Scholar
  59. Hanski I, Kuusela S (1980) The structure of carrion fly communities: differences in breeding seasons. Ann Zool Fenn 17:185–190Google Scholar
  60. Heinrich B, Pepper JW (1998) Influence of competitors on caching behavior in the common raven, Corvus corax. Anim Behav 56:1083–1090PubMedCrossRefPubMedCentralGoogle Scholar
  61. Helfield JM, Naiman RJ (2006) Keystone interactions: salmon and bear in riparian forests of Alaska. Ecosystems 9:167–180CrossRefGoogle Scholar
  62. Hertel F (1994) Diversity in body size and feeding morphology within past and present vulture assemblages. Ecology 75:1074–1084CrossRefGoogle Scholar
  63. Hill BJ, Wassenberg TJ (1990) Fate of discards from prawn trawlers in Torres strait. Aust J Marine Freshwater Res 41:53–64CrossRefGoogle Scholar
  64. Hill JE, DeVault TL, Beasley JC, Rhodes OE Jr, Belant JL (2018) Effects of vulture exclusion on carrion consumption by facultative scavengers. Ecol Evol 8(5):2518–2526PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hocking MD, Reynolds JD (2011) Impacts of salmon on riparian plant diversity. Science 331:1609–1612PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hocking MD, Ring RA, Reimchen TE (2009) The ecology of terrestrial invertebrates on Pacific salmon carcasses. Ecol Res 24:1091–1100CrossRefGoogle Scholar
  67. Houston DB (1978) Elk as winter-spring food for carnivores in northern Yellowstone National Park. J Appl Ecol 15:653–661CrossRefGoogle Scholar
  68. Houston DC (1979) The adaptations of scavengers. In: Sinclair ARE, Griffiths NM (eds) Serengeti, dynamics of an ecosystem. University of Chicago Press, Chicago, pp 263–286Google Scholar
  69. Houston DB (1982) The northern Yellowstone elk: ecology and management. Macmillan, New YorkGoogle Scholar
  70. Houston D, Cooper J (1975) The digestive tract of the whiteback griffon vulture and its role in disease transmission among wild ungulates. J Wildl Dis 11:306–313CrossRefGoogle Scholar
  71. Hutchinson G (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  72. Janzen D (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713CrossRefGoogle Scholar
  73. Jędrzejewska B, Jędrzejewski W (1998) Predation in vertebrate communities. The Białowieża Primeval Forest as a case study. Springer, BerlinCrossRefGoogle Scholar
  74. Jędrzejewski W, Zalewski A, Jędrzejewska B (1993) Foraging by pine marten Martes martes in relation to food resources in Białowieża National Park, Poland. Acta Theriol 38:405–426CrossRefGoogle Scholar
  75. Jennelle C, Samuel MD, Nolden CA, Berkley EA (2009) Deer carcass decomposition and potential scavenger exposure to chronic wasting disease. J Wildl Manag 73:655–662CrossRefGoogle Scholar
  76. Johnson SB, Warén A, Lee RW, Kano Y, Kaim A, Davis A, Strong EE, Vrjenhoek RC (2010) Rubyspira, new genus and two new species of bone-eating deep-sea snails with ancient habits. Biol Bull 219:166–177PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kaiser MJ, Moore PG (1999) Obligate marine scavengers: do they exist? J Nat Hist 33:475–481CrossRefGoogle Scholar
  78. Killengreen ST, Strømseng E, Yoccoz NG, Ims RA (2012) How ecological neighbourhoods influence the structure of the scavenger guild in low arctic tundra. Divers Distrib 18:563–574CrossRefGoogle Scholar
  79. Kirk DA, Mossman MJ (1998) Turkey vulture (Cathartes aura). Account 339 in Poole A (ed) The Birds of North America Online. Cornell Lab of Ornithology, Ithaca, NY. http://bna.birds.cornell.edu.proxy-remote.galib.uga.edu/bna/species/339
  80. Kruuk H (1967) Competition for food between vultures in East Africa. Ardea 55:171–193Google Scholar
  81. Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci U S A 103:11211–11216PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lam K, Babor D, Duthie B, Babor EM, Moore M, Gries G (2007) Proliferating bacterial symbionts on house fly eggs affect oviposition behavior of adult flies. Ani Behav 74:81–92CrossRefGoogle Scholar
  83. Lawton J (1989) Food webs. In: Cherrett J (ed) Ecological concepts. Blackwell Scientific, Oxford, pp 43–78Google Scholar
  84. Levi T, Wheat RE, Allen JM, Wilmers CC (2015) Differential use of salmon by vertebrate consumers: implications for conservation. PeerJ 3:e1157.  https://doi.org/10.7717/peerj.1157CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–417CrossRefGoogle Scholar
  86. Linnell JD, Ronny A, Reidar A (1995) Who killed bambi? The role of predation in the neonatal mortality of temperate ungulates. Wildl Biol 1:209–223CrossRefGoogle Scholar
  87. Longcore T, Rich C, Mineau P, MacDonald B, Bert DG, Sullivan LM, Mutrie M, Gauthreaux SA Jr, Avery ML, Crawford RL, Manville AM II, Travis ER, Drake D (2012) An estimate of avian mortality at communication towers in the United States and Canada. PLoS One 7:e34025PubMedPubMedCentralCrossRefGoogle Scholar
  88. Loss SR, Will T, Marra PP (2013a) The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 4:1396PubMedCrossRefPubMedCentralGoogle Scholar
  89. Loss SR, Will T, Marra PP (2013b) Estimates of bird collision mortality at wind facilities in the contiguous United States. Biol Conserv 168:201–209CrossRefGoogle Scholar
  90. Loss SR, Will T, Marra PP (2014a) Estimation of bird-vehicle collision mortality on U.S. roads. J Wildl Manag 78:763–771CrossRefGoogle Scholar
  91. Loss SR, Will T, Loss SS, Marra PP (2014b) Bird-building collisions in the United States: estimates of annual mortality and species vulnerability. Condor 116:8–23CrossRefGoogle Scholar
  92. Lowney MS (1999) Damage by black and turkey vultures in Virginia, 1990-1996. Wildl Soc Bull 27:715–719Google Scholar
  93. Magoun AJ (1976) Summer scavenging activity in northeastern Alaska. MS thesis, University of Alaska, FairbanksGoogle Scholar
  94. Margalida A, Bertran J, Heredia R (2009) Diet and food preferences of the endangered Bearded Vulture Gypaetus barbatus: a basis for their conservation. Ibis 151:235–243Google Scholar
  95. Margalida A, Campión D, Donázar JA (2014) Vultures vs. livestock: conservation relationships in an emerging conflict between humans and wildlife. Oryx 48:172–176CrossRefGoogle Scholar
  96. Markandya A, Taylor T, Longo A, Murty MN, Murty S, Dhavala K (2008) Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol Econ 67:194–204CrossRefGoogle Scholar
  97. Martínez ND (1991) Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol Monogr 61:367–392CrossRefGoogle Scholar
  98. Mateo-Tomás P, Olea PP, Moleón M, Vicente J, Botella F, Selva N, Viñuela J, Sánchez-Zapata JA (2015) From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Divers Distrib 21:913–924CrossRefGoogle Scholar
  99. May RM (1972) Will a large complex system be stable? Nature 238:413–414PubMedCrossRefPubMedCentralGoogle Scholar
  100. McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798CrossRefGoogle Scholar
  101. McKinnerney M (1978) Carrion communities in the northern Chihuahuan Desert. Southwest Nat 23:563–576CrossRefGoogle Scholar
  102. Melis C, Teurlings I, Linnell JDC, Andersen R, Bordoni A (2004) Influence of a deer carcass on Coleopteran diversity in a Scandinavian boreal forest: a preliminary study. Eur J Wildl Res 50:146–149Google Scholar
  103. Melis C, Selva N, Teurlings I, Skarpe C, Linnell JDC, Andersen R (2007) Soil and vegetation nutrient response to bison carcasses in Białowieża Primeval Forest, Poland. Ecol Res 22:807–813CrossRefGoogle Scholar
  104. Merkle JA, Stahler DA, Smith DW (2009) Interference competition between gray wolves and coyotes in Yellowstone National Park. Can J Zool 87:56–63CrossRefGoogle Scholar
  105. Moleón M, Sánchez-Zapata JA, Sebastián-González E, Owen-Smith N (2015) Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124:1391–1403CrossRefGoogle Scholar
  106. Moore JE, Swihart RK (2005) Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data. J Wildl Manag 69:933–949CrossRefGoogle Scholar
  107. Müller JK, Eggert AK, Dressel J (1990) Intraspecific brood parasitism in the burying beetle, Nicrophorus vespilloides (Coleoptera: Silphidae). Anim Behav 40:491–499CrossRefGoogle Scholar
  108. Neutel AM, Heesterbeek JA, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123PubMedCrossRefPubMedCentralGoogle Scholar
  109. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BU, Shivaprasad HL, Ahmed S, Chaudhry MJI, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633CrossRefGoogle Scholar
  110. Ogada DL, Keesing F, Virani MZ (2012a) Dropping dead: causes and consequences of vulture population declines worldwide. Ann N Y Acad Sci 1249:57–71PubMedCrossRefPubMedCentralGoogle Scholar
  111. Ogada DL, Torchin ME, Kinnaird MF, Ezenwa VO (2012b) Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv Biol 26:453–460PubMedPubMedCentralCrossRefGoogle Scholar
  112. Olson ZH, Beasley JC, DeVault TL, Rhodes OE Jr (2012) Scavenger community response to the removal of a dominant scavenger. Oikos 121:77–84CrossRefGoogle Scholar
  113. Olson ZH, Beasley JC, Rhodes OE Jr (2016) Carcass type affects local scavenger guilds more than habitat connectivity. PLoS One 11:e0147798PubMedPubMedCentralCrossRefGoogle Scholar
  114. Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez-Abrain A (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pain DJ, Cunningham AA, Donald PF, Duckworth JW, Houston DC, Katzner T, Parry-Jones J, Poole C, Prakash V, Round P, Timmins R (2003) Causes and effects of temporospatial declines of Gyps vultures in Asia. Conserv Biol 17:661–671CrossRefGoogle Scholar
  116. Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am Nat 153:492–508CrossRefGoogle Scholar
  117. Parmenter R, MacMahon J (2009) Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol Monogr 79:637–661CrossRefGoogle Scholar
  118. Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602CrossRefGoogle Scholar
  119. Pechal JL, Benbow EM, Crippen TL, Tarone AM, Tomberlin JK (2014) Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 5(4):45CrossRefGoogle Scholar
  120. Peterson RO, Vucetich JA, Bump JM, Smith DW (2014) Trophic cascades in a multicausal world: Isle Royale and Yellowstone. Annu Rev Ecol Evol Syst 45:325–345CrossRefGoogle Scholar
  121. Pimm SL (1982) Food webs. Chapman and Hall, New YorkCrossRefGoogle Scholar
  122. Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. Am Nat 138:123–155CrossRefGoogle Scholar
  123. Prakash V, Pain DJ, Cunningham AA, Donald PF, Prakash N, Verma A, Gargi R, Sivakumar S, Rahmani AR (2003) Catastrophic collapse of Indian white-backed Gyps bengalensis and long-billed Gyps indicus vulture population. Biol Conserv 109:381–390CrossRefGoogle Scholar
  124. Prugh LR, Stoner CJ, Epps DW, Bean WR, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791CrossRefGoogle Scholar
  125. Ramsay K, Kaiser MJ, Moore PG, Hughes RN (1997) Consumption of fisheries discards by benthic scavengers: utilization of energy subsidies in different marine habitats. J Anim Ecol 66:884–896CrossRefGoogle Scholar
  126. Restani M, Harmata AR, Madden EM (2000) Numerical and functional responses of migrant bald eagles exploiting a seasonally concentrated food source. Condor 102:561–568CrossRefGoogle Scholar
  127. Roggenbuck M, Schnell IB, Blom N, Baelum J, Bertelsen MF, Pontén TS, Sørensen SJ, Gilbert MTP, Graves GR, Hansen LH (2014) The microbiome of New World vultures. Nat Commun 5:5498PubMedCrossRefPubMedCentralGoogle Scholar
  128. Rooney TP, Waller DM (2003) Direct and indirect effects of white-tailed deer in forest ecosystems. For Ecol Manag 181:165–176CrossRefGoogle Scholar
  129. Rose MD, Polis GA (1998) The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79:998–1007CrossRefGoogle Scholar
  130. Roth JD (2003) Variability in marine resources affects arctic fox population dynamics. J Anim Ecol 72:668–676PubMedCrossRefPubMedCentralGoogle Scholar
  131. Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: Bone-eating marine worms with dwarf males. Science 305:668–671PubMedCrossRefPubMedCentralGoogle Scholar
  132. Ruxton GD, Bailey DM (2005) Searching speeds and the energetic feasibility of an obligate whale-scavenging fish. Deep Sea Res Part 1 Oceanogr Res Pap 52:1536–1541CrossRefGoogle Scholar
  133. Ruxton GD, Houston DC (2003) Could Tyrannosaurus rex have been a scavenger rather than a predator? An energetics approach. Proc R Soc Lond B Biol Sci 270:731–733CrossRefGoogle Scholar
  134. Ruxton GD, Houston DC (2004a) Obligate vertebrate scavengers must be large soaring fliers. J Theor Biol 228:431–436CrossRefGoogle Scholar
  135. Ruxton GD, Houston DC (2004b) Energetic feasibility of an obligate marine scavenger. Mar Ecol Prog Ser 266:59–63CrossRefGoogle Scholar
  136. Schlichting PE, Love CN, Webster SC, Beasley JC (2019) Efficiency and composition of vertebrate scavengers at the land-water interface in the Chernobyl Exclusion Zone. Food Webs 18:e00107CrossRefGoogle Scholar
  137. Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of top carnivore removals on plants. Am Nat 155:141–153PubMedCrossRefPubMedCentralGoogle Scholar
  138. Sebastián-González M, Sánchez-Zapata JA, Donazar JA, Selva N, Cortéz-Avizanda A, Hiraldo F, Blázquez M, Botella F, Moleón M (2013) Interactive effects of obligate scavengers and scavenger community richness on lagomorph carcass consumption patterns. Ibis 155:881–885CrossRefGoogle Scholar
  139. Sebastián-González E, Moleón M, Gibert JP, Botella F, Mateo-Tomás P, Olea PP, Guimarães PR Jr, Sánchez-Zapata JA (2016) Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97:95–105PubMedPubMedCentralCrossRefGoogle Scholar
  140. Selva N (2004a) The role of scavenging in the predator community of Białowieża Primeval Forest (E Poland). PhD thesis, University of Sevilla, SpainGoogle Scholar
  141. Selva N (2004b) Life after death – scavenging on ungulate carcasses. In: Jędrzejewska B, Wójcik JM (eds) Essays on mammals of Białowieża Forest. Mammal Research Institute, PAS, Białowieża, pp 59–68Google Scholar
  142. Selva N, Fortuna MA (2007) The nested structure of a scavenger community. Proc R Soc Lond B Biol Sci 274:1101–1108CrossRefGoogle Scholar
  143. Selva N, Jȩdrzejewska B, Jȩdrzejewski W, Wajrak A (2003) Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Ecoscience 10:303–311CrossRefGoogle Scholar
  144. Selva N, Jȩdrzejewska B, Jȩdrzejewski W, Wajrak A (2005) Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can J Zool 83:1590–1601CrossRefGoogle Scholar
  145. Shivik JA (2006) Are vultures birds, and do snakes have venom, because of macro- and microscavenger conflict? Bioscience 56:819–823CrossRefGoogle Scholar
  146. Shivik JA, Clark L (1999) Ontogenetic shifts in carrion attractiveness to brown tree snakes (Boiga irregularis). J Herpetol 33:334–336CrossRefGoogle Scholar
  147. Sikes DS (1994) Influences of ungulate carcasses on coleopteran communities in Yellowstone National Park, USA. MS thesis, Montana State University, MontanaGoogle Scholar
  148. Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354Google Scholar
  149. Smith DW, Peterson RO, Houston DB (2003) Yellowstone after Wolves. Bioscience 53:330–340CrossRefGoogle Scholar
  150. Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Arbizu PM (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518–528PubMedCrossRefPubMedCentralGoogle Scholar
  151. Stahler D, Heinrich B, Smith D (2002) Common ravens, Corvus corax, preferentially associate with grey wolves, Canis lupus, as a foraging strategy in winter. Anim Behav 64:283–290CrossRefGoogle Scholar
  152. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, OxfordGoogle Scholar
  153. Switalski TA (2003) Coyote foraging ecology and vigilance in response to gray wolf reintroduction in Yellowstone National Park. Can J Zool 81:985–993CrossRefGoogle Scholar
  154. Tamburri MN, Barry JP (1999) Adaptations for scavenging by three diverse bathyla species, Eptatretus stouti, Neptunea amianta and Orchomene obtusus. Deep Sea Res 46(Pt 1):2079–2093CrossRefGoogle Scholar
  155. Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363CrossRefGoogle Scholar
  156. Tomberlin JK, Sheppard DC, Joyce JA (2005) Black soldier fly (Diptera: Stratiomyidae) colonization of pig carrion in South Georgia. J Forensic Sci 50:JFS2003391-2Google Scholar
  157. Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239PubMedPubMedCentralCrossRefGoogle Scholar
  158. Turner KL, Abernethy EF, Conner LM, Rhodes OE Jr, Beasley JC (2017) Abiotic and biotic factors modulate carrion fate and scavenging community dynamics. Ecology 98:2413–2424PubMedCrossRefPubMedCentralGoogle Scholar
  159. VanLaerhoven S (2010) Ecological theory and its application in forensic entomology. In: Byrd J, Castner J (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, pp 493–518Google Scholar
  160. VerCauteren KC, Pilon JL, Nash PB, Phillips GE, Fischer JW (2012) Prion remains infectious after passage through digestive system of American crows (Corvus brachyrhynchos). PLoS One 7:e45774PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633PubMedCrossRefGoogle Scholar
  162. Wasserman S, Faust K (1994) Social network analysis: Methods and applications, vol 8. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  163. Whitaker JO Jr, Mumford RE (2010) Mammals of Indiana. Revised an. Indiana University Press, BloomingtonGoogle Scholar
  164. Wikenros C, Sand H, Ahlqvist P, Liberg O (2013) Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS One 8(10):e77373PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wilmers CC, Getz WM (2004) Simulating the effects of wolf-elk population dynamics on resource flow to scavengers. Ecol Model 177:193–208CrossRefGoogle Scholar
  166. Wilmers CC, Getz WM (2005) Gray wolves as climate change buffers in Yellowstone. PLoS Biol 3:e92PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wilmers CC, Crabtree RL, Smith DW, Murphy KM, Getz WM (2003a) Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. J Anim Ecol 72:909–916CrossRefGoogle Scholar
  168. Wilmers CC, Stahler DR, Crabtree RL, Smith DW, Getz WM (2003b) Resource dispersion and consumer dominance: scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol Lett 6:996–1003CrossRefGoogle Scholar
  169. Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135PubMedPubMedCentralCrossRefGoogle Scholar
  170. Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zalewski A (2000) Factors affecting the duration of activity by pine martens (Martes martes) in the Białowieża National Park, Poland. J Zool 251:439–447Google Scholar
  172. Zalewski A, Jędrzejewski W, Jędrzejewska B (1995) Pine marten home ranges, numbers and predation on vertebrates in a deciduous forest (Białowieża National Park, Poland). Ann Zool Fenn 32:131–144Google Scholar
  173. Zheng L, Crippen TL, Holmes L, Singh B, Pimsler ML, Benbow ME, Tarone AM, Dowd S, Yu Z, Vanlaerhoven SL, Wood TK, Tomberlin JK (2013) Bacteria mediate oviposition by the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae). Sci Reports 3:2563CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • James C. Beasley
    • 1
    Email author
  • Zachary H. Olson
    • 2
  • Nuria Selva
    • 3
  • Travis L. DeVault
    • 4
  1. 1.Savannah River Ecology LabWarnell School of Forestry and Natural Resources, University of GeorgiaAikenUSA
  2. 2.Department of PsychologyUniversity of New EnglandBiddefordUSA
  3. 3.Institute of Nature Conservation, Polish Academy of SciencesKrakówPoland
  4. 4.National Wildlife Research CenterAnimal Plant Health Inspection Service, Wildlife Services, U.S. Department of AgricultureSanduskyUSA

Personalised recommendations