Advertisement

Vasoactive Peptides: Renin-Angiotensin-Aldosterone System

  • Katrin Nather
  • Christopher M. Loughrey
  • Stuart A. NicklinEmail author
Chapter

Abstract

The classical renin-angiotensin-aldosterone system (RAAS) is characterized by formation of the effector peptide angiotensin II (Ang II) to participate in acute regulation of blood pressure (BP) and fluid and electrolyte balance. Ang II is generated through cleavage of angiotensinogen and angiotensin I by renin and angiotensin-converting enzyme (ACE), respectively. Ang II acts on two seven-transmembrane G protein-coupled receptors, the angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptor (AT2R), which mediate opposing actions via distinct signaling pathways. The AT1R mediates classical actions of Ang II including aldosterone secretion, vasoconstriction, renal sodium reabsorption and fluid retention, sympathetic activation, and stimulation of cardiac contractility, while the AT2R mediates vasodilation and natriuresis. A natural counter-regulatory RAAS axis acts through ACE2 to generate alternative peptides angiotensin-(1-7) and angiotensin-(1-9) which counteract classical RAAS actions. Furthermore, other RAAS peptide metabolites are also reported to have effects in the cardiovascular system. Pharmacological therapy focuses on inhibiting Ang II generation with ACE inhibitors (ACEi) and actions with AT1R blockers (ARBs). ACEi and ARBs reduce BP and alleviate end-organ damage in cardiovascular disease (CVD) and are mainstay treatments for hypertension and heart failure. The development of next-generation ACEi and ARBs focuses on the development of selective ACEi and biased ARBs and promises more selective and efficacious options for the treatment of CVD.

Keywords

Renin-angiotensin-aldosterone system Angiotensin II Angiotensin-converting enzyme inhibitors Angiotensin II receptor blockers 

References

  1. 1.
    Bernstein KE, Ong FS, Blackwell WL, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev. 2013;65:1–46.CrossRefGoogle Scholar
  2. 2.
    Dinh DT, Frauman AG, Johnston CI, Fabiani ME. Angiotensin receptors: distribution, signalling and function. Clin Sci (Lond). 2001;100:481–92.CrossRefGoogle Scholar
  3. 3.
    Steckelings UM, Larhed M, Hallberg A, Widdop RE, Jones ES, Wallinder C, Namsolleck P, Dahlöf B, Unger T. Non-peptide AT2-receptor agonists. Curr Opin Pharmacol. 2011;11:187–92.CrossRefGoogle Scholar
  4. 4.
    De Mello WC. Local renin angiotensin aldosterone systems and cardiovascular diseases. Med Clin N Am. 2017;101:117–27.CrossRefGoogle Scholar
  5. 5.
    Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov. 2002;1:621–36.CrossRefGoogle Scholar
  6. 6.
    Li EC, Heran BS, Wright JM. Angiotensin converting enzyme (ACE) inhibitors versus angiotensin receptor blockers for primary hypertension. Cochrane Database Syst Rev. 2014;(8):CD009096. doi:  https://doi.org/10.1002/14651858.CD009096.pub2.
  7. 7.
    Junot C, Gonzales MF, Ezan E, Cotton J, Vazeux G, Michaud A, Azizi M, Vassiliou S, Yiotakis A, Corvol P, Dive V. RXP 407, a selective inhibitor of the N-domain of angiotensin I-converting enzyme, blocks in vivo the degradation of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro with no effect on angiotensin I hydrolysis. J Pharmacol Exp Ther. 2001;297:606–11.PubMedGoogle Scholar
  8. 8.
    Burger D, Reudelhuber TL, Mahajan A, Chibale K, Sturrock ED, Touyz RM. Effects of a domain-selective ACE inhibitor in a mouse model of chronic angiotensin II-dependent hypertension. Clin Sci (Lond). 2014;127:57–63.CrossRefGoogle Scholar
  9. 9.
    Brown NJ, Vaughan DE. Angiotensin-converting enzyme inhibitors. Circulation. 1998;97:1411–20.CrossRefGoogle Scholar
  10. 10.
    Burnier M. Angiotensin II type 1 receptor blockers. Circulation. 2001;103:904–12.CrossRefGoogle Scholar
  11. 11.
    Paulis L, Steckelings UM, Unger T. Key advances in antihypertensive treatment. Nat Rev Cardiol. 2012;9:276–85.CrossRefGoogle Scholar
  12. 12.
    Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375:1255–66.CrossRefGoogle Scholar
  13. 13.
    Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov. 2010;9:373–86.CrossRefGoogle Scholar
  14. 14.
    Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med. 2011;17:126–39.CrossRefGoogle Scholar
  15. 15.
    Lambert DW, Hooper NM, Turner AJ. Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system. Biochem Pharmacol. 2008;75:781–6.CrossRefGoogle Scholar
  16. 16.
    McKinney CA, Fattah C, Loughrey CM, Milligan G, Nicklin SA. Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodelling. Clin Sci (Lond). 2014;126:815–27.CrossRefGoogle Scholar
  17. 17.
    Hussain M, Awan FR. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin Exp Hypertens. 2018;40:344–52.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katrin Nather
    • 1
  • Christopher M. Loughrey
    • 1
  • Stuart A. Nicklin
    • 1
    Email author
  1. 1.Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research CentreUniversity of GlasgowGlasgowUK

Personalised recommendations